Polymer Component (polymer + component)

Distribution by Scientific Domains


Selected Abstracts


Electroconductive Hydrogels: Electrical and Electrochemical Properties of Polypyrrole-Poly(HEMA) Composites

ELECTROANALYSIS, Issue 7 2005
Sean Brahim
Abstract Composites of inherently conductive polypyrrole (PPy) within highly hydrophilic poly(2-hydroxyethyl methacrylate)-based hydrogels (p(HEMA)) have been fabricated and their electrochemical properties investigated. The electrochemical characteristics observed by cyclic voltammetry suggest less facile reduction of PPy within the composite hydrogel compared to electropolymerized PPy, as shown by the shift in the reduction peak potential from ,472,mV for electropolymerized polypyrrole to ,636,mV for the electroconductive composite gel. The network impedance magnitude for the electroconductive hydrogel remains quite low, ca. 100,,, even upon approach to DC, over all frequencies and at all offset potentials suggesting retained electronic (bipolaronic) conductivity within the composite. In contrast, sustained application of +0.7 V (vs. Ag/AgCl, 3,M Cl,) for typically 100,min. (conditioning) to reduce the background amperometric current to <1.0,,A, resulted in complete loss of electroactivity. Nyquist plots suggest that sustained application of such a modest potential to the composite hydrogel results in impedance characteristics that resembles p(HEMA) without evidence of the conducting polymer component. PPy composite gels supported a larger ferrocene monocarboxylate diffusivity (Dappt=7.97×10,5,cm2,s,1) compared to electropolymerized PPy (Dappt=5.56×10,5,cm2,s,1), however a marked reduction in diffusivity (Dappt=1.01×10,5,cm2,s,1) was observed with the conditioned hydrogel composite. Cyclic voltammograms in buffer containing H2O2 showed an absence of redox peaks for electrodes coated with PPy-containing membranes, suggesting possible chemical oxidation of polypyrrole by the oxidant [source]


Effect of morphology on the electric conductivity of binary polymer blends filled with carbon black

JOURNAL OF APPLIED POLYMER SCIENCE, Issue 3 2007
Zhongbin Xu
Abstract Several carbon black (CB)-filled binary polymer blends were prepared in Haake rheometer. Distribution states of CB and effect of morphology on the electric conductivity of different ternary composites were investigated. Under our experimental condition CB particles located preferentially at the interface between polymethyl methacrylate (PMMA) and polypropylene (PP) in PMMA/PP/CB composites, in high-density polyethylene (HDPE) phase in PP/HDPE/CB composites, and in Nylon6 (PA6) phase in polystyrene (PS)/PA6/CB, PP/PA6/CB, PMMA/PA6/CB, and polyacrylonitrile (PAN)/PA6/CB composites; the ternary composites in which CB particles locate at the interface of two polymer components have the highest electric conductivity when the mass ratio of the two polymers is near to 1 : 1. The ternary composites in which CB particles located preferentially in one polymer have the highest electric conductivity usually when the amount of the polymer component having CB particles is comparatively less than the amount of the polymer component not having CB particles; if the formulations of PS/PA6/CB, PP/PA6/CB, and PMMA/PA6/CB composites equaled and PA6/CB in them is in dispersed phase, PS/PA6/CB composites have the highest electric conductivity and PP/PA6/CB composites have the lowest electric conductivity; suitable amount of PS or PAN in PA6/CB composites increase the electric conductivity due in the formation of a parallel electrocircuit for electrons to transmit. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci, 2007 [source]


Crystalline/Crystalline Phase Transitions in Polymer Systems Consisting of Finite-Size Crystals in Each Crystalline Phase: Generalized Gibbs-Thomson Equation

MACROMOLECULAR THEORY AND SIMULATIONS, Issue 7 2010
Matsuo Hirami
Abstract For polymer systems of two crystalline phases of one polymer component, each phase being consisted of polymer crystals of a finite size, we derive the crystalline-crystalline phase transition relationship, i.e., generalized Gibbs-Thomson equation. Its application combined with the crystalline-liquid transition relationship (usual Gibbs-Thomson equation) to the phase behavior of PT phase diagram of polyethylene (PE) is investigated, where the orthorhombic-hexagonal phase transition of PE crystal under high pressure being involved. Comparison with experimental data leads to the estimates of the structural characteristics such as the ratios of (the end surface free energy of polymer crystal/crystal length) for the respective crystalline phases. [source]


Thermodynamic characterization of hybrid polymer blend systems

POLYMER ENGINEERING & SCIENCE, Issue 6 2009
Amos Ophir
A thermodynamic model was used to predict the morphology of hybrid multicomponent polymer blend systems. Two systems were studied, both including two noncompatible polymers, a third compatibilizer polymer and layered, organo-treated clays. The polar and nonpolar contributions of the surface energies of the components of the systems were calculated using measurements of the contact angles. The morphology of the multicomponent systems and the relative position of the organo-clays within them, were predicted by calculating the interaction energies between the different components of the system and evaluating these values according to the Vaia and Giannelis thermodynamic model for polymer melt intercalation in organically modified layered silicates. The experimental results show good correlation with the prediction that the organo-clays will have higher affinity to the compatibilizer polymer component situated at the interface between the two noncompatible blend components. In addition, the presence of the organo-clays in this interface was found to have a significant additional compatibilizing effect between the two polymer phases. The results presented in this work support the idea that hybrid formation via polymer melt intercalation depends mostly on energetic factors that can be determined from surface energies of polymers and organo-modified layered silicates, also in the case of multiphase polymer system. POLYM. ENG. SCI., 2009. © 2009 Society of Plastics Engineers [source]


Hierarchical Pattern Replication by Polymer Demixing,

ADVANCED MATERIALS, Issue 9 2003
M. Sprenger
Structures with a lateral size of ,,100 nm have been created using a new replication method based on the demixing of a ternary polymer mixture during spin-coating. The technique, which relies on the interfacial wetting of one of the polymer components at the interface of the other two, produces structures (see Figure) that are significantly smaller than the lateral dimensions of the substrate prepattern. [source]


Effect of morphology on the electric conductivity of binary polymer blends filled with carbon black

JOURNAL OF APPLIED POLYMER SCIENCE, Issue 3 2007
Zhongbin Xu
Abstract Several carbon black (CB)-filled binary polymer blends were prepared in Haake rheometer. Distribution states of CB and effect of morphology on the electric conductivity of different ternary composites were investigated. Under our experimental condition CB particles located preferentially at the interface between polymethyl methacrylate (PMMA) and polypropylene (PP) in PMMA/PP/CB composites, in high-density polyethylene (HDPE) phase in PP/HDPE/CB composites, and in Nylon6 (PA6) phase in polystyrene (PS)/PA6/CB, PP/PA6/CB, PMMA/PA6/CB, and polyacrylonitrile (PAN)/PA6/CB composites; the ternary composites in which CB particles locate at the interface of two polymer components have the highest electric conductivity when the mass ratio of the two polymers is near to 1 : 1. The ternary composites in which CB particles located preferentially in one polymer have the highest electric conductivity usually when the amount of the polymer component having CB particles is comparatively less than the amount of the polymer component not having CB particles; if the formulations of PS/PA6/CB, PP/PA6/CB, and PMMA/PA6/CB composites equaled and PA6/CB in them is in dispersed phase, PS/PA6/CB composites have the highest electric conductivity and PP/PA6/CB composites have the lowest electric conductivity; suitable amount of PS or PAN in PA6/CB composites increase the electric conductivity due in the formation of a parallel electrocircuit for electrons to transmit. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci, 2007 [source]


Preparation of high-temperature polyurethane by alloying with reactive polyamide

JOURNAL OF POLYMER SCIENCE (IN TWO SECTIONS), Issue 20 2002
Tsutomu Takeichi
Abstract A series of novel poly(urethane amide) films were prepared by the reaction of a polyurethane (PU) prepolymer and a soluble polyamide (PA) containing aliphatic hydroxyl groups in the backbone. The PU prepolymer was prepared by the reaction of polyester polyol and 2,4-tolylenediisocyanate and then was end-capped with phenol. Soluble PA was prepared by the reaction of 1-(m -aminophenyl)-2-(p -aminophenyl)ethanol and terephthaloyl chloride. The PU prepolymer and PA were blended, and the clear, transparent solutions were cast on glass substrates; this was followed by thermal treatments at various temperatures to produce reactions between the isocyanate group of the PU prepolymer and the hydroxyl group of PA. The opaque poly(urethane amide) films showed various properties, from those of plastics to those of elastomers, depending on the ratio of the PU and PA components. Dynamic mechanical analysis showed two glass-transition temperatures (Tg's), a lower Tg due to the PU component and a higher Tg due to the PA component, suggesting that the two polymer components were phase-separated. The rubbery plateau region of the storage modulus for the elastic films was maintained up to about 250 °C, which is considerably higher than for conventional PUs. Tensile measurements of the elastic films of 90/10 PU/PA showed that the elongation was as high as 347%. This indicated that the alloying of PU with PA containing aliphatic hydroxyl groups in the backbone improved the high-temperature properties of PU and, therefore, enhanced the use temperature of PU. © 2002 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 40: 3497,3503, 2002 [source]


The study of the miscibility and morphology of poly(styrene-co-4-vinylphenol)/poly(propylene carbonate) blends

POLYMERS FOR ADVANCED TECHNOLOGIES, Issue 8 2004
Furong Qiu
Abstract Blends of poly(propylene carbonate) (PPC) with copolymer poly(styrene-co-4-vinyl phenol) (STVPh) have been studied by electron spin resonance (ESR) spin probe method and Raman spectroscopy. The ESR results indicated that the nitroxide radical existed in a PPC-rich and an STVPh-rich micro domain in the blends, corresponding to the fast-motion and slow-motion component in the ESR spectra, respectively. And in the temperature dependence composite spectra, the fast-motion fraction increased with increasing the hydroxyl group content in copolymer STVPh. Moreover, the ESR parameter T5mT, rotational correlation times (,c) and activation energies (Ea) showed similar dependence on the hydroxyl group content as the fast-motion fraction. It resulted from the enhancement of the hydrogen-bonding interaction between the hydroxyl groups in STVPh and the carboxyl groups and ether oxygen in PPC. However, the distinct band shift and intensity change among the Raman spectra of pure polymer components and those of the blends were observed. In the carboxyl-stretching region, the band shifted to lower frequency with increasing the hydroxyl groups. Furthermore, the phase morphologies of the blends were obtained by optical microscopy. All could be concluded that the hydrogen-bonding interaction between the two components was progressively favorable to the mixing process and was the driving force for the miscibility enhancement in the blends. Copyright © 2004 John Wiley & Sons, Ltd. [source]