Home About us Contact | |||
Polymer Chains (polymer + chain)
Terms modified by Polymer Chains Selected AbstractsQuartz Crystal Microbalance Studies on Conformational Change of Polymer Chains at InterfaceMACROMOLECULAR RAPID COMMUNICATIONS, Issue 4-5 2009Guangzhao Zhang Abstract The conformation of polymers at interface profoundly influences the interfacial properties. Quartz crystal microbalance with dissipation (QCM-D) is a newly developed technique to detect polymer behavior at interface in real time. In this article, we mainly review our QCM-D studies. Our focus is on temperature induced collapse and swelling of tethered polymer chains, pancake-to-brush transition and mushroom-to-brush of polymer chains. [source] Laser Induced Marking of Polymer Chains with Radical Spin TrapsMACROMOLECULAR RAPID COMMUNICATIONS, Issue 6 2008Thomas Junkers Abstract A pathway for marking of polymer chains with radical spin traps during pulsed laser polymerization in free radical polymerization is presented. By introducing a so-called marker that forms a non-propagating radical at (or shortly after) the incidence of a laser pulse, a polymer subdistribution is generated by specifically terminating propagating radicals via combination with such a marker radical. The generated polymer subdistribution can subsequently be imaged by modern soft-ionization mass spectrometry. Herein, the general methodology of the method in which such marker is generated via reaction of an initiating radical with a nitrone is demonstrated on the examples of BA and VAc. [source] Enhancement of Electrochromic Contrast by Tethering Conjugated Polymer Chains onto Polyhedral Oligomeric Silsesquioxane NanocagesMACROMOLECULAR RAPID COMMUNICATIONS, Issue 3 2007Shanxin Xiong Abstract Copolymerization of aniline with octa(aminophenyl) silsesquioxane (OAPS) was performed, which resulted in polyaniline-tethered, polyhedral oligomeric silsesquioxane (POSS-PANI), with star-like molecular geometry. The spectro-electrochemical studies show that the electrochromic contrast of POSS-PANI is much higher than that of polyaniline (PANI). The great improvement can be attributed to the more accessible doping sites and the facile ion movement during the redox switching, brought by the loose packing of the PANI chains. This was evidenced by a drastic increase in ionic conductivity, a decrease in the electrical conductivity, and a decrease in the crystallinity and crystal size, with the increase of the OAPS concentration in the POSS-PANI. [source] Synthesis and SFM Study of Comb-Like Poly(4-vinylpyridinium) Salts and Their Complexes with SurfactantsMACROMOLECULAR RAPID COMMUNICATIONS, Issue 13 2006Marat O. Gallyamov Abstract Summary: Poly(4-vinylpyridinium) bromides containing octyl and dodecyl pendant groups were synthesized. Bromide anions in these polymer salts were substituted with dodecylsulfate and bis(2-ethylhexylsuccinate) anions using ion-exchange reactions. Initially, P4VP and its derivatives loaded with hydrophobic groups were deposited on a mica surface from diluted solutions in chloroform for visualization. Images of single adsorbed macromolecules were obtained using scanning force microscopy. Original P4VP chains form partially compacted self-intersecting coils. Loading the polymer chains with large hydrophobic groups and especially the increase in the number of alkyl tails (see Figure) per monomer unit of the polymer chain leads to the stretching of the coils, and the comb-like macromolecules adopt more and more extended self-avoiding 2D conformations when deposited on the substrate. Polymer chains with large hydrophobic groups and increasing number of alkyl tails per monomer unit of the polymer chain. [source] Raman and Rayleigh scattering study of crystalline polyoxyethyleneglycolsCRYSTAL RESEARCH AND TECHNOLOGY, Issue 4-5 2005M. Kozielski Abstract Results of the study of Raman and Rayleigh scattering in crystalline polyoxyethyleneglycols (PEG) and PEG 1500 aqueous solution are reported. The conformational changes of the polymer chain have been studied as a function of PEG water solution concentration and molecular weight. Intensity ratios of the gauche and trans conformation around C,C and C,O bonds have been estimated from the Raman spectra. Moreover, from the Raman band parameters the values of the order parameters versus aqueous solution concentration have been determined. The influence of an external electric field on these parameters has been analysed. Mutual orientation of polyoxyethyleneglycol chains in the crystalline and liquid state has been studied on the basis of the angular correlation parameters obtained from the Rayleigh band intensity as a function of aqueous solution concentration and molecular weight. (© 2005 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim) [source] Oxygen-Generating Gel Systems Induced by Visible LightADVANCED FUNCTIONAL MATERIALS, Issue 5 2010Kosuke Okeyoshi Abstract Toward complete artificial photosynthesis systems to generate hydrogen and oxygen using visible light and water, oxygen-generating gel systems are designed and fabricated using the electrostatic interactions of ionic functional groups and steric effects of a polymer network. By using a graft polymer chain with Ru(bpy)32+ units as sensitizers to closely arrange RuO2 nanoparticles as catalyst, the functional groups transmit multiple electrons cooperatively to generate oxygen. In this paper, a novel strategy is shown to design a hierarchical network structure using colloidal nanoparticles and macromonomers. Such a soft material to oxidize water inside a hydrogel is useful as a solar-energy converting system. [source] Pathogen-Mimicking MnO Nanoparticles for Selective Activation of the TLR9 Pathway and Imaging of Cancer Cells,ADVANCED FUNCTIONAL MATERIALS, Issue 23 2009Mohammed Ibrahim Shukoor Abstract Here, design of the first pathogen-mimicking metal oxide nanoparticles with the ability to enter cancer cells and to selectively target and activate the TLR9 pathway, and with optical and MR imaging capabilities, is reported. The immobilization of ssDNA (CpG ODN 2006) on MnO nanoparticles is performed via the phosphoramidite route using a multifunctional polymer. The multifunctional polymer used for the nanoparticle surface modification not only affords a protective organic biocompatible shell but also provides an efficient and convenient means for loading immunostimulatory oligonucleotides. Since fluorescent molecules are amenable to photodetection, a chromophore (Rhodamine) is introduced into the polymer chain to trace the nanoparticles in Caki-1 (human kidney cancer) cells. The ssDNA coupled nanoparticles are used to target Toll-like receptors 9 (TLR9) receptors inside the cells and to activate the classical TLR cascade. The presence of TLR9 is demonstrated independently in the Caki-1 cell line by western blotting and immunostaining techniques. The magnetic properties of the MnO core make functionalized MnO nanoparticles potential diagnostic agents for magnetic resonance imaging (MRI) thereby enabling multimodal detection by a combination of MR and optical imaging methods. The trimodal nanoparticles allow the imaging of cellular trafficking by different means and simultaneously are an effective drug carrier system. [source] Cover Picture: (Adv. Synth.ADVANCED SYNTHESIS & CATALYSIS (PREVIOUSLY: JOURNAL FUER PRAKTISCHE CHEMIE), Issue 18 2009Catal. The cover picture, provided by Maurice S. Brookhart, shows an example of a cationic palladium diimine complex which catalyzes polymerization of ethylene to high molecular weight, highly branched polyethylene. The catalyst resting states are the alkyl ethylene complexes as modeled by the ethyl ethylene complex shown. Migratory insertion of these alkyl ethylene species leads to ,-agostic complexes in which palladium can rapidly migrate along the chain ("chain-walking") through ,-elimination/readdition reactions. Trapping of branched alkyl complexes followed by insertion leads to formation of branches in the polymer chain. Polyethylenes formed exhibit branches-on-branches since chain-walking through tertiary centers is facile. [source] Cover Picture: (Adv. Synth.ADVANCED SYNTHESIS & CATALYSIS (PREVIOUSLY: JOURNAL FUER PRAKTISCHE CHEMIE), Issue 17 2009Catal. The cover picture, provided by Maurice S. Brookhart, shows an example of a cationic palladium diimine complex which catalyzes polymerization of ethylene to high molecular weight, highly branched polyethylene. The catalyst resting states are the alkyl ethylene complexes as modeled by the ethyl ethylene complex shown. Migratory insertion of these alkyl ethylene species leads to ,-agostic complexes in which palladium can rapidly migrate along the chain ("chain-walking") through ,-elimination/readdition reactions. Trapping of branched alkyl complexes followed by insertion leads to formation of branches in the polymer chain. Polyethylenes formed exhibit branches-on-branches since chain-walking through tertiary centers is facile. [source] Cover Picture: (Adv. Synth.ADVANCED SYNTHESIS & CATALYSIS (PREVIOUSLY: JOURNAL FUER PRAKTISCHE CHEMIE), Issue 16 2009Catal. The cover picture, provided by Maurice S. Brookhart, shows an example of a cationic palladium diimine complex which catalyzes polymerization of ethylene to high molecular weight, highly branched polyethylene. The catalyst resting states are the alkyl ethylene complexes as modeled by the ethyl ethylene complex shown. Migratory insertion of these alkyl ethylene species leads to ,-agostic complexes in which palladium can rapidly migrate along the chain ("chain-walking") through ,-elimination/readdition reactions. Trapping of branched alkyl complexes followed by insertion leads to formation of branches in the polymer chain. Polyethylenes formed exhibit branches-on-branches since chain-walking through tertiary centers is facile. [source] Cover Picture: (Adv. Synth.ADVANCED SYNTHESIS & CATALYSIS (PREVIOUSLY: JOURNAL FUER PRAKTISCHE CHEMIE), Issue 14-15 2009Catal. The cover picture, provided by Maurice S. Brookhart, shows an example of a cationic palladium diimine complex which catalyzes polymerization of ethylene to high molecular weight, highly branched polyethylene. The catalyst resting states are the alkyl ethylene complexes as modeled by the ethyl ethylene complex shown. Migratory insertion of these alkyl ethylene species leads to ,-agostic complexes in which palladium can rapidly migrate along the chain ("chain-walking") through ,-elimination/readdition reactions. Trapping of branched alkyl complexes followed by insertion leads to formation of branches in the polymer chain. Polyethylenes formed exhibit branches-on-branches since chain-walking through tertiary centers is facile. [source] Cover Picture: (Adv. Synth.ADVANCED SYNTHESIS & CATALYSIS (PREVIOUSLY: JOURNAL FUER PRAKTISCHE CHEMIE), Issue 13 2009Catal. The cover picture, provided by Maurice S. Brookhart, shows an example of a cationic palladium diimine complex which catalyzes polymerization of ethylene to high molecular weight, highly branched polyethylene. The catalyst resting states are the alkyl ethylene complexes as modeled by the ethyl ethylene complex shown. Migratory insertion of these alkyl ethylene species leads to ,-agostic complexes in which palladium can rapidly migrate along the chain ("chain-walking") through ,-elimination/readdition reactions. Trapping of branched alkyl complexes followed by insertion leads to formation of branches in the polymer chain. Polyethylenes formed exhibit branches-on-branches since chain-walking through tertiary centers is facile. [source] Cover Picture: (Adv. Synth.ADVANCED SYNTHESIS & CATALYSIS (PREVIOUSLY: JOURNAL FUER PRAKTISCHE CHEMIE), Issue 11-12 2009Catal. The cover picture, provided by Maurice S. Brookhart, shows an example of a cationic palladium diimine complex which catalyzes polymerization of ethylene to high molecular weight, highly branched polyethylene. The catalyst resting states are the alkyl ethylene complexes as modeled by the ethyl ethylene complex shown. Migratory insertion of these alkyl ethylene species leads to ,-agostic complexes in which palladium can rapidly migrate along the chain ("chain-walking") through ,-elimination/readdition reactions. Trapping of branched alkyl complexes followed by insertion leads to formation of branches in the polymer chain. Polyethylenes formed exhibit branches-on-branches since chain-walking through tertiary centers is facile. [source] Cover Picture: (Adv. Synth.ADVANCED SYNTHESIS & CATALYSIS (PREVIOUSLY: JOURNAL FUER PRAKTISCHE CHEMIE), Issue 10 2009Catal. The cover picture, provided by Maurice S. Brookhart, shows an example of a cationic palladium diimine complex which catalyzes polymerization of ethylene to high molecular weight, highly branched polyethylene. The catalyst resting states are the alkyl ethylene complexes as modeled by the ethyl ethylene complex shown. Migratory insertion of these alkyl ethylene species leads to ,-agostic complexes in which palladium can rapidly migrate along the chain ("chain-walking") through ,-elimination/readdition reactions. Trapping of branched alkyl complexes followed by insertion leads to formation of branches in the polymer chain. Polyethylenes formed exhibit branches-on-branches since chain-walking through tertiary centers is facile. [source] Cover Picture: (Adv. Synth.ADVANCED SYNTHESIS & CATALYSIS (PREVIOUSLY: JOURNAL FUER PRAKTISCHE CHEMIE), Issue 9 2009Catal. The cover picture, provided by Maurice S. Brookhart, shows an example of a cationic palladium diimine complex which catalyzes polymerization of ethylene to high molecular weight, highly branched polyethylene. The catalyst resting states are the alkyl ethylene complexes as modeled by the ethyl ethylene complex shown. Migratory insertion of these alkyl ethylene species leads to ,-agostic complexes in which palladium can rapidly migrate along the chain ("chain-walking") through ,-elimination/readdition reactions. Trapping of branched alkyl complexes followed by insertion leads to formation of branches in the polymer chain. Polyethylenes formed exhibit branches-on-branches since chain-walking through tertiary centers is facile. [source] Cover Picture: (Adv. Synth.ADVANCED SYNTHESIS & CATALYSIS (PREVIOUSLY: JOURNAL FUER PRAKTISCHE CHEMIE), Issue 7-8 2009Catal. The cover picture, provided by Maurice S. Brookhart, shows an example of a cationic palladium diimine complex which catalyzes polymerization of ethylene to high molecular weight, highly branched polyethylene. The catalyst resting states are the alkyl ethylene complexes as modeled by the ethyl ethylene complex shown. Migratory insertion of these alkyl ethylene species leads to ,-agostic complexes in which palladium can rapidly migrate along the chain ("chain-walking") through ,-elimination/readdition reactions. Trapping of branched alkyl complexes followed by insertion leads to formation of branches in the polymer chain. Polyethylenes formed exhibit branches-on-branches since chain-walking through tertiary centers is facile. [source] Cover Picture: (Adv. Synth.ADVANCED SYNTHESIS & CATALYSIS (PREVIOUSLY: JOURNAL FUER PRAKTISCHE CHEMIE), Issue 6 2009Catal. The cover picture, provided by Maurice S. Brookhart, shows an example of a cationic palladium diimine complex which catalyzes polymerization of ethylene to high molecular weight, highly branched polyethylene. The catalyst resting states are the alkyl ethylene complexes as modeled by the ethyl ethylene complex shown. Migratory insertion of these alkyl ethylene species leads to ,-agostic complexes in which palladium can rapidly migrate along the chain ("chain-walking") through ,-elimination/readdition reactions. Trapping of branched alkyl complexes followed by insertion leads to formation of branches in the polymer chain. Polyethylenes formed exhibit branches-on-branches since chain-walking through tertiary centers is facile. [source] Cover Picture: (Adv. Synth.ADVANCED SYNTHESIS & CATALYSIS (PREVIOUSLY: JOURNAL FUER PRAKTISCHE CHEMIE), Issue 5 2009Catal. The cover picture, provided by Maurice S. Brookhart, shows an example of a cationic palladium diimine complex which catalyzes polymerization of ethylene to high molecular weight, highly branched polyethylene. The catalyst resting states are the alkyl ethylene complexes as modeled by the ethyl ethylene complex shown. Migratory insertion of these alkyl ethylene species leads to ,-agostic complexes in which palladium can rapidly migrate along the chain ("chain-walking") through ,-elimination/readdition reactions. Trapping of branched alkyl complexes followed by insertion leads to formation of branches in the polymer chain. Polyethylenes formed exhibit branches-on-branches since chain-walking through tertiary centers is facile. [source] Cover Picture: (Adv. Synth.ADVANCED SYNTHESIS & CATALYSIS (PREVIOUSLY: JOURNAL FUER PRAKTISCHE CHEMIE), Issue 4 2009Catal. The cover picture, provided by Maurice S. Brookhart, shows an example of a cationic palladium diimine complex which catalyzes polymerization of ethylene to high molecular weight, highly branched polyethylene. The catalyst resting states are the alkyl ethylene complexes as modeled by the ethyl ethylene complex shown. Migratory insertion of these alkyl ethylene species leads to ,-agostic complexes in which palladium can rapidly migrate along the chain ("chain-walking") through ,-elimination/readdition reactions. Trapping of branched alkyl complexes followed by insertion leads to formation of branches in the polymer chain. Polyethylenes formed exhibit branches-on-branches since chain-walking through tertiary centers is facile. [source] Cover Picture: (Adv. Synth.ADVANCED SYNTHESIS & CATALYSIS (PREVIOUSLY: JOURNAL FUER PRAKTISCHE CHEMIE), Issue 3 2009Catal. The cover picture, provided by Maurice S. Brookhart, shows an example of a cationic palladium diimine complex which catalyzes polymerization of ethylene to high molecular weight, highly branched polyethylene. The catalyst resting states are the alkyl ethylene complexes as modeled by the ethyl ethylene complex shown. Migratory insertion of these alkyl ethylene species leads to ,-agostic complexes in which palladium can rapidly migrate along the chain ("chain-walking") through ,-elimination/readdition reactions. Trapping of branched alkyl complexes followed by insertion leads to formation of branches in the polymer chain. Polyethylenes formed exhibit branches-on-branches since chain-walking through tertiary centers is facile. [source] Cover Picture: (Adv. Synth.ADVANCED SYNTHESIS & CATALYSIS (PREVIOUSLY: JOURNAL FUER PRAKTISCHE CHEMIE), Issue 1-2 2009Catal. The cover picture, provided by Maurice S. Brookhart, shows an example of a cationic palladium diimine complex which catalyzes polymerization of ethylene to high molecular weight, highly branched polyethylene. The catalyst resting states are the alkyl ethylene complexes as modeled by the ethyl ethylene complex shown. Migratory insertion of these alkyl ethylene species leads to ,-agostic complexes in which palladium can rapidly migrate along the chain ("chain-walking") through ,-elimination/readdition reactions. Trapping of branched alkyl complexes followed by insertion leads to formation of branches in the polymer chain. Polyethylenes formed exhibit branches-on-branches since chain-walking through tertiary centers is facile. [source] Structural analysis of thin films of novel polynorbornene derivatives by grazing incidence X-ray scattering and specular X-ray reflectivity along with ellipsometryJOURNAL OF APPLIED CRYSTALLOGRAPHY, Issue 2007Taek Joon Lee In the present study, structural analyses using synchrotron grazing incidence X-ray scattering, specular reflectivity and ellipsometry were performed on thin films of two novel polynorbornene derivatives, chiral poly(norbornene acid methyl ester) and racemic poly(norbornene acid n -butyl ester), which are potential low dielectric constant materials for advanced microelectronic and display applications. These analyses provided important information on the structure, electron density gradient across the film thickness, chain orientation, refractive index and thermal expansion characteristics of the polymers in substrate-supported thin films. The structural characteristics and properties of the thin films depended on the tacticity of the polymer chain and were further influenced by the film thickness and thermal annealing history. [source] Influence of azobenzene units on imidization kinetic of novel poly(ester amic acid)s and polymers properties before and after cyclodehydrationJOURNAL OF APPLIED POLYMER SCIENCE, Issue 5 2010Ewa Schab-Balcerzak Abstract In this article, the imidization reaction kinetic of novel poly(ester amic acid)s with azobenzene units as side groups was studied by dynamic experiments by means of differential scanning calorimetry. Polymers differ in the number of chromophore moieties in their repeating unit and position in which azobenzene group is attached to the polymer chain. The kinetic parameters of poly(ester amic acid)s conversion to poly(ester imide)s was compared with data calculated for parent polymer, that is, without azobenzene groups. For the first time to our knowledge, the imidization kinetic of polymers with side azobenzene groups was studied. Kinetic parameters, such as the activation energy and frequency factor were estimated with the by Ozawa model [(E(O) and A(O)), respectively] and Kissinger model [(E(K) and A(K), respectively]. The values of activation energy determined with both models were in the range 167.1,198.3 kJ/mol. The lowest activation energy of imidization reaction exhibited polymer in which azobenzene units were placed between amide linkages. Polymers were characterized by FTIR, 1H-NMR, X-ray, and UV,vis methods. The glass transition temperature of resultant poly(ester imide)s was in the range of 217,237°C. The presence of chromophore units slightly decreased Tg and significantly improved their solubility and optical properties. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2010 [source] Preparation, characterization, and cellular interactions of collagen-immobilized PDMS surfacesJOURNAL OF APPLIED POLYMER SCIENCE, Issue 1 2008I. Keranov Abstract Multistep procedure to biofunctionalization of (poly)dimethylsiloxane (PDMS) surfaces is present here, including plasma-based Ar+ beam treatment; acrylic acid grafting; and flexible PEG spacer coupling prior to the collagen immobilization by peptide synthesis reaction. The success of any step of the surface modification is controlled by XPS analysis, contact angle measurements, SEM, and AFM observations. To evaluate the effect of PEG chain length, three diNH2PEGs (2000, 6000, and 20,000 D) of relative long polymer chain were employed as a spacer, expecting that a long flexible spacer could provide more conformational freedom for the collagen molecules and fibroblast reorganization to further cellular matrix formation. Human fibroblast cells were used as a model to evaluate the biological response of the collagen-immobilized PDMS surfaces. It is found that the earlier described biofunctionalization is one more road to improvement of the cellular interaction of PDMS, the last one being the best when PEG spacer with moderate chain length, namely of 6000 D, is used. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2008 [source] Synthesis and characterization of polypyrrole rod doped with p -toluenesulfonic acid via micelle formationJOURNAL OF APPLIED POLYMER SCIENCE, Issue 6 2008Duk Ki Kim Abstract Rod-type polypyrrole (PPY) doped with p -toluenesulfonic acid (TSA) was synthesized by chemical oxidative polymerization via a self-assembly process. The shape of the PPY particles is mainly determined by the ratio of TSA/pyrrole (PY) and feed rate of the oxidant. Particle of different shapes (rod, grain, and partially rod) exhibit differences in morphology, electrical properties, dispersity, and thermal properties. Wide-angle X-ray diffraction patterning analysis was used to investigate the mechanism of rod formation. The effect of the TSA concentration on the PPY structure was investigated using Fourier transform infrared spectroscopy. The PPY rods doped with TSA exhibited better electrical conductivity than granular PPY doped with TSA, and their dispersity and thermal stability were also higher. Self-orientation of PPY in the micelles of TSA and high crystallinity of the rod particles led to improved thermal stability. Hence, the decomposition temperature of the polymer chain was considerably increased. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci 2008 [source] Gas-phase-assisted surface polymerization of methyl methacrylate with Fe(0)/TsCl initiator systemJOURNAL OF APPLIED POLYMER SCIENCE, Issue 3 2007Yoshito Andou Abstract To obtain a high polymer coated Fe(0) surface, gas-phase-assisted surface polymerization (GASP) of methyl methacrylate (MMA) was investigated using a zero-valent iron (Fe(0))/p -toluene sulfonylchloride (TsCl) initiator system, resulting in successful high polymer production on the solid surface. GASP was found to be initiated by radical species that might have been generated via redox reactions with Fe(0), Fe(II), Fe(III), and TsCl. From 1H-NMR analysis, the p -toluene sulfonyl group was found at one end of the polymer chain. The molecular weight of obtained PMMA drastically decreased with increase in the composition ratio of Fe(0) in the initiator system, and increased with increase in polymer yield. From the results, it was assumed that the physically controlled polymerization of MMA proceeded by immobilized active species at gas,solid interfaces. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 103: 1879,1886, 2007 [source] Synthesis and characterization of conducting polyaniline-activated carbon nanocompositesJOURNAL OF APPLIED POLYMER SCIENCE, Issue 3 2007Mohammad Rezaul Karim Abstract Conducting polyaniline (PAni)/activated carbon (AC) nanocomposites were synthesized by the in situ chemical polymerization method. The resultant shell,core PAni,AC nanocomposites were characterized by elemental analysis, Fourier transform infrared, scanning electron microscopy, thermal gravimetric analysis, X-ray diffraction, and transmission electron microscopy. We did not observe any significant chemical interaction between the PAni and AC, only core,shell coupling between the AC and the tightly coated polymer chain was revealed. Measurement of the physical properties showed that the incorporation of conducting PAni on to AC particles during chemical synthesis increased electrical conductivity and thermal stability by several orders of magnitude to that of the pristine PAni powders. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 103: 1973,1977, 2007 [source] Quantum bits with polyacetyleneJOURNAL OF COMPUTATIONAL CHEMISTRY, Issue 9 2002Andre Elvas Pereira Da Silva Abstract The dynamics of a polyacetylene single chain as a system for possible physical implementations of quantum bits is determined. This novel proposition is studied by varying intensity and duration of application of an electric field as well as the intensity, number, and position in the polymer chain of impurity molecules. The behavior of soliton pairs, whose associated energy levels form the quantum bit, is analyzed. The chain is modeled by a modified Pariser,Parr,Pople Hamiltonian extended to include the effects of an external electric field and the parameters of the impurity molecules. The effect of the variation of the field and impurities on the separation of the energy levels associated with soliton pairs is analyzed by numerical integration of the equations of motion. Two different approaches for controlling the separation of levels are presented, and their features compared. First, the use of changes in the electric field to control the distance (and ultimately coupling) between two solitons moving freely on the chain or captured by the potential generated by the impurity molecules. Second, the change in the intensity of the impurities alone, with no application of an external field. We have found that the effect of the use of the field on the separation of levels is much smaller than the one obtained by changes in the parameters of the impurity molecules, which eventually led us to achieve quantum bit behavior in a polyacetylene chain. The influence of the field and impurity parameters in the energy levels is determined, as well as their role in the coupling of the two solitons on the chain. Critical values for distance between solitons, intensity of field, and impurities that determine whether a pair of solitons can work as a quantum bit are obtained. © 2002 Wiley Periodicals, Inc. J Comput Chem 9: 870,873, 2002 [source] Rheological and Thermal Properties of Polylactide/Silicate Nanocomposites FilmsJOURNAL OF FOOD SCIENCE, Issue 2 2010Jasim Ahmed ABSTRACT:, Polylactide (DL)/polyethylene glycol/silicate nanocomposite blended biodegradable films have been prepared by solvent casting method. Rheological and thermal properties were investigated for both neat amorphous polylactide (PLA-DL form) and blend of montmorillonite (clay) and poly (ethylene glycol) (PEG). Melt rheology of the PLA individually and blends (PLA/clay; PLA/PEG; PLA/PEG/clay) were performed by small amplitude oscillation shear (SAOS) measurement. Individually, PLA showed an improvement in the viscoelastic properties in the temperature range from 180 to 190 °C. Incorporation of nanoclay (3% to 9% wt) was attributed by significant improvements in the elastic modulus (G,) of PLA/clay blend due to intercalation at higher temperature. Both dynamic modulii of PLA/PEG blend were significantly reduced with addition of 10% PEG. Rheometric measurement could not be conducted while PLA/PEG blends containing 25% PEG. A blend of PLA/PEG/clay (68/23/9) showed liquid-like properties with excellent flexibility. Thermal analysis of different clay loading films indicated that the glass transition temperatures (Tg) remained unaffected irrespective of clay concentration due to immobilization of polymer chain in the clay nanocomposite. PEG incorporation reduced the,Tg of the blend (PLA/PEG and PLA/PEG/clay) significantly. Both rheological and thermal analysis data supported plasticization and flexibility of the blended films. It is also interesting to study competition between PLA and PEG for the intercalation into the interlayer spacing of the clay. This study indicates that PLA/montmorillonite blend could serve as effective nano-composite for packaging and other applications. [source] Simple model to predict gel formation in olefin-diene copolymerizations catalyzed by constrained-geometry complexesAICHE JOURNAL, Issue 5 2010Job D. Guzmán Abstract We have developed an analytical model to predict the onset of gel formation in ethylene/1-octene/1,9-decadiene terpolymerizations using constrained-geometry catalysts. The model relies on three kinetic parameters to characterize the catalyst response. Polymer resins have been synthesized in a continuous stirred-tank reactor to determine the model parameters, and to validate the model predictions for polymer properties and for the onset of gel formation and reactor fouling. The experimental results indicate that the free double bonds in 1,9-decadiene are as reactive as those found in 1-octene, and that the reactivity of 1,9-decadiene double bonds decreases after the 1,9-decadiene molecules become part of a polymer chain. The model predictions of polymer properties agree well with chromatographic, density, and mass-balance data. Moreover, the model was successful in preventing unintended reactor fouling during the duration of the experimental campaign. © 2009 American Institute of Chemical Engineers AIChE J, 2010 [source] |