Home About us Contact | |||
Polymer Brushes (polymer + brush)
Kinds of Polymer Brushes Selected AbstractsNormal and Lateral Deformation of Lyotropically Ordered Polymer BrushMACROMOLECULAR THEORY AND SIMULATIONS, Issue 9 2006Alexey A. Polotsky Abstract Summary: Planar polymer brush formed by semirigid chains of freely jointed rigid segments and immersed into a solvent is considered. Brush collapse induced by deterioration of the solvent quality and its deformation by external normal or lateral force is studied. It is demonstrated that these three different situations can be described in the framework of the common approach. It is shown that the collapse is accompanied by liquid-crystalline (LC) ordering within the brush. The LC transition can be jump-like (the first order) or continuous, depending on the segment's aspect ratio and grafting density. Transition point is investigated in detail, the corresponding phase diagrams are calculated. It is shown that the phase diagrams of a normally deformed brush have different structures, with a narrow ,leg' in the good solvent region for sparsely grafted brush, with two coexistence regions and a triple point, in addition, for shorter segment length or without these features if the chains are densely grafted. For the laterally deformed brush, phase diagrams have similar structures with a critical point in the good solvent regime. Polymer brush subjected to deformation by normal (top) and lateral (bottom) external force. [source] Free Energy of a Non-Gaussian Polymer BrushMACROMOLECULAR THEORY AND SIMULATIONS, Issue 4 2003Victor M. Amoskov Abstract An analytical theory describing layers of polymer chains grafted to a planar surface (i.e. polymer brush) is developed. We consider a brush of chains with finite extensibility (or non-Gaussian brush) within the framework of molecular field theory. An analytical solution for free energy of the brush and a few other brush characteristics are obtained and studied. Comparison with other known models of a brush is also made. Chain extensibility E(x, y) for Gaussian model (dashed lines) and BCC model (solid lines) for a few chain end positions y (numbers near curves). [source] Polymer Brushes with Nanometer-Scale GradientsADVANCED MATERIALS, Issue 46 2009Christian Schuh Surfaces with steep height or composition gradients at the nanometer scale are synthesized from self-asssembled photoinitiator monolayers. The monolayers are prestructured by interference lithography followed by brush growth. Through step-and-repeat processes, surfaces with nano meter-scale composition gradients are obtained. [source] Engineered Polymer Brushes by Carbon TemplatingADVANCED MATERIALS, Issue 28 2009Marin Steenackers A general method for the fabrication of stable polymer brushes of programmable three-dimensional shapes and different chemical functions is presented. The carbon templating method allows the functionalization of a broad variety of substrates without the need of a specific surface chemistry. As an example, the AFM scan of complex polymer brush structures on a bare GaAs substrate is shown. [source] In Pursuit of Zero: Polymer Brushes that Resist the Adsorption of ProteinsADVANCED MATERIALS, Issue 23 2009Angus Hucknall Abstract Protein resistant or "non-fouling" surfaces are of great interest for a variety of biomedical and biotechnology applications. This article briefly reviews the development of protein resistant surfaces, followed by recent research on a new methodology to fabricate non-fouling surfaces by surface-initiated polymerization. We show that polymer brushes synthesized by surface-initiated polymerization that present short oligo(ethylene glycol) side chains are exceptionally resistant to protein adsorption and cell adhesion. The importance of the protein and cell resistance conferred by these polymer brushes is illustrated by their use as substrates for the fabrication of antibody microarrays that exhibit femtomolar limits of detection in complex fluids such as serum and blood with relaxed requirements for intermediate wash steps. This example highlights the important point that the reduction in background noise afforded by protein-resistant surfaces can greatly simplify the development of ultrasensitive heterogeneous, surface-based clinical and proteomic assays with increased sensitivity and utility. [source] Simple Fabrication of Antibody Microarrays on Nonfouling Polymer Brushes with Femtomolar Sensitivity for Protein Analytes in Serum and BloodADVANCED MATERIALS, Issue 19 2009Angus Hucknall A multianalyte antibody array that is spotted on a poly(oligo(ethylene glycol) methacrylate) brush 100,nm thick, grown on glass via surface-initiated atom transfer radical polymerization, has femtomolar limit-of-detection (LOD) of cytokines in serum and whole blood, and a dynamic range of six orders of magnitude for a range of protein analytes. [source] Self-Cleaning and Anti-Fog Surfaces via Stimuli-Responsive Polymer Brushes,ADVANCED MATERIALS, Issue 22 2007A. Howarter The wetting character of surfactant based polymer brushes is examined. The unique ability for the brush surfaces to be both hydrophilic and oleophobic rendered self-cleaning materials. [source] Synthesis of Polymer Brushes Using Atom Transfer Radical PolymerizationMACROMOLECULAR RAPID COMMUNICATIONS, Issue 18 2003Jeffrey Pyun Abstract Atom transfer radical polymerization (ATRP) is a robust method for the preparation of well-defined (co)polymers. This process has also enabled the preparation of a wide range of polymer brushes where (co)polymers are covalently attached to either curved or flat surfaces. In this review, the general methodology for the synthesis of polymer brushes from flat surfaces, polymers and colloids is summarized focusing on reports using ATRP. Additionally, the morphology of ultrathin films from polymer brushes is discussed using atomic force microscopy (AFM) and other techniques to confirm the formation of nanoscale structure and organization. Formation of polymer brushes by ATRP. [source] Grafting Polymer Brushes from Glass Fibers by Surface-Initiated ATRPMACROMOLECULAR REACTION ENGINEERING, Issue 3-4 2010Hongwen Zhang Abstract Grafting of PMMA and/or PS brushes from the surface of glass fibers by SI-ATRP has been investigated in order to achieve a controlled surface structure of the matrix. The surface composition and morphology of the modified glass fibers were analyzed by FTIR, XPS, TGA, and SEM. The results indicated that the surface composition and morphology were improved by grafting polymer after modification. The modified glass fibers were composed of an organic tube and an inorganic core. The organic content on the surface of modified glass fibers was high. GPC data of free polymer showed that the SI-ATRP from the surface of bromine-bound glass fibers proceeded in a controlled/"living" manner. [source] Dissipative Particle Dynamics Simulations of Polymer Brushes: Comparison with Molecular Dynamics SimulationsMACROMOLECULAR THEORY AND SIMULATIONS, Issue 9 2006Sandeep Pal Abstract Summary: The structure of polymer brushes is investigated by dissipative particle dynamics (DPD) simulations that include explicit solvent particles. With an appropriate choice of the DPD interaction parameters , we obtain good agreement with previous molecular dynamics (MD) results where the good solvent behavior has been modeled by an effective Lennard,Jones potential. The present results confirm that DPD simulation techniques can be applied for large length scale simulations of polymer brushes. A relation between the different length scales and is established. Polymer brush at a solid,liquid interface. [source] Structure of Polymer Brushes in Cylindrical Tubes: A Molecular Dynamics SimulationMACROMOLECULAR THEORY AND SIMULATIONS, Issue 7 2006Dimitar I. Dimitrov Abstract Summary: Molecular dynamics simulations of a coarse-grained bead-spring model of flexible macromolecules tethered with one end to the surface of a cylindrical pore are presented. Chain length N and grafting density , are varied over a wide range and the crossover from "mushroom" to "brush" behavior is studied for three pore diameters. The monomer density profile and the distribution of the free chain ends are computed and compared to the corresponding model of polymer brushes at flat substrates. It is found that there exists a regime of N and , for large enough pore diameter where the brush height in the pore exceeds the brush height on the flat substrate, while for large enough N and , (and small enough pore diameters) the opposite behavior occurs, i.e. the brush is compressed by confinement. These findings are used to discuss the corresponding theories on polymer brushes at concave substrates. Snapshot picture of a brush grafted inside of a cylinder, for , , displaying different chains in distinct colors in order to be able to distinguish them. Top shows a side view of the cylinder, and the lower part a view of the cross-section. Note that the particles forming the cylindrical wall are not displayed. [source] Corrigendum: Scanning Electron Microscopy Investigation of Molecular Transport and Reactivity within Polymer BrushesCHEMPHYSCHEM, Issue 9 2010Tarik Matrab Dr. No abstract is available for this article. [source] Normal and Lateral Deformation of Lyotropically Ordered Polymer BrushMACROMOLECULAR THEORY AND SIMULATIONS, Issue 9 2006Alexey A. Polotsky Abstract Summary: Planar polymer brush formed by semirigid chains of freely jointed rigid segments and immersed into a solvent is considered. Brush collapse induced by deterioration of the solvent quality and its deformation by external normal or lateral force is studied. It is demonstrated that these three different situations can be described in the framework of the common approach. It is shown that the collapse is accompanied by liquid-crystalline (LC) ordering within the brush. The LC transition can be jump-like (the first order) or continuous, depending on the segment's aspect ratio and grafting density. Transition point is investigated in detail, the corresponding phase diagrams are calculated. It is shown that the phase diagrams of a normally deformed brush have different structures, with a narrow ,leg' in the good solvent region for sparsely grafted brush, with two coexistence regions and a triple point, in addition, for shorter segment length or without these features if the chains are densely grafted. For the laterally deformed brush, phase diagrams have similar structures with a critical point in the good solvent regime. Polymer brush subjected to deformation by normal (top) and lateral (bottom) external force. [source] Dissipative Particle Dynamics Simulations of Polymer Brushes: Comparison with Molecular Dynamics SimulationsMACROMOLECULAR THEORY AND SIMULATIONS, Issue 9 2006Sandeep Pal Abstract Summary: The structure of polymer brushes is investigated by dissipative particle dynamics (DPD) simulations that include explicit solvent particles. With an appropriate choice of the DPD interaction parameters , we obtain good agreement with previous molecular dynamics (MD) results where the good solvent behavior has been modeled by an effective Lennard,Jones potential. The present results confirm that DPD simulation techniques can be applied for large length scale simulations of polymer brushes. A relation between the different length scales and is established. Polymer brush at a solid,liquid interface. [source] Surface-Grafted Gel-Brush/Metal Nanoparticle HybridsADVANCED FUNCTIONAL MATERIALS, Issue 6 2010Edmondo M. Benetti Abstract Polymer brushes are classically defined and are to date employed as assemblies of macromolecules tethered at one end to a surface. The concept of preparing surface-grafted gels by crosslinking such brushes is attractive since it gives rise to new opportunities related to the constraints present in this type of structure. Aiming at the development of nanostructured films possessing precisely adjustable chemical, mechanical, and optical properties, the present article describes the preparation of novel grafted layers based on gel-brush/metal nanoparticle hybrids. These films were synthesized by surface-initiated atom transfer radical polymerization of hydroxyethyl methacrylate with a small percentage of a crosslinker. The swelling, morphological, and mechanical properties of the gel-brushes are shown to be highly dependent on the relative amount of crosslinker used. The gel-brushes are subsequently used as matrixes for the controlled synthesis of silver nanoparticles with overall characteristics that are specifically tunable as a function of the macromolecular structure of the brush template. [source] Synthetic Hydrophilic Materials with Tunable Strength and a Range of Hydrophobic Interactions,ADVANCED FUNCTIONAL MATERIALS, Issue 14 2010Olha Hoy Abstract The ability to vary, adjust, and control hydrophobic interactions is crucial in manipulating interactions between biological objects and the surface of synthetic materials in aqueous environment. To this end a grafted polymer layer (multi-component mixed polymer brush) is synthesized that is capable of reversibly exposing nanometer-sized hydrophobic fragments at its hydrophilic surface and of tuning, turning on, and turning off the hydrophobic interactions. The reversible switching occurs in response to changes in the environment and alters the strength and range of attractive interactions between the layer and hydrophobic or amphiphilic probes in water. The grafted layer retains its overall hydrophilicity, while local hydrophobic forces enable the grafted layer to sense and attract the hydrophobic domains of protein molecules dissolved in the aqueous environment. The hydrophobic interactions between the material and a hydrophobic probe are investigated using atomic force microscopy measurements and a long-range attractive and contact-adhesive interaction between the material and the probe is observed, which is controlled by environmental conditions. Switching of the layer exterior is also confirmed via protein adsorption measurements. [source] Electrochemical Nanotransistor from Mixed-Polymer BrushesADVANCED MATERIALS, Issue 16 2010Tsz Kin Tam Reversible switching of the electrode interface between OFF/ON states is achieved by electrochemically triggered reorganization of a nanostructured polymer brush associated with the interface. The switching process is accomplished by local interfacial pH changes allowing operation in buffered biological environments (see figure). The fabricated device mimics the performance of switching electronic devices such as transistors. [source] Multifunctioning pH-responsive nanoparticles from hierarchical self-assembly of polymer brush for cancer drug deliveryAICHE JOURNAL, Issue 11 2008Youqing Shen Abstract Polymer nanoparticles are extensively explored as drug carriers but they generally have issues of premature burst drug release, slow cellular uptake, and retention in acidic intracellular compartments. Herein, we report multifunctioning three-layered nanoparticles (3LNPs) that can overcome these problems. The 3LNPs have a poly(,-caprolactone) (PCL) core, a pH-responsive poly[2-(N,N-diethylamino)ethyl methacrylate](PDEA) middle layer and a polyethylene glycol (PEG) outer layer. The pH-responsive PDEA layer is insoluble at pH above 7 but becomes positively charged and soluble via protonation at pH lower than 6.5. Thus, this layer has three functions: it covers on the PCL core inhibiting the premature burst drug release at the physiological pH, becomes positively charged and thus promotes endocytosis for fast cellular internalization in the acidic interstitium of solid tumors, and is highly positively charged in lysosomes to disrupt the lysosomal membrane and release the nanoparticle into the cytosol. The multifunctioning nanoparticles are an efficient carrier for cancer cytosolic drug delivery. © 2008 American Institute of Chemical Engineers AIChE J, 2008 [source] Normal and Lateral Deformation of Lyotropically Ordered Polymer BrushMACROMOLECULAR THEORY AND SIMULATIONS, Issue 9 2006Alexey A. Polotsky Abstract Summary: Planar polymer brush formed by semirigid chains of freely jointed rigid segments and immersed into a solvent is considered. Brush collapse induced by deterioration of the solvent quality and its deformation by external normal or lateral force is studied. It is demonstrated that these three different situations can be described in the framework of the common approach. It is shown that the collapse is accompanied by liquid-crystalline (LC) ordering within the brush. The LC transition can be jump-like (the first order) or continuous, depending on the segment's aspect ratio and grafting density. Transition point is investigated in detail, the corresponding phase diagrams are calculated. It is shown that the phase diagrams of a normally deformed brush have different structures, with a narrow ,leg' in the good solvent region for sparsely grafted brush, with two coexistence regions and a triple point, in addition, for shorter segment length or without these features if the chains are densely grafted. For the laterally deformed brush, phase diagrams have similar structures with a critical point in the good solvent regime. Polymer brush subjected to deformation by normal (top) and lateral (bottom) external force. [source] Free Energy of a Non-Gaussian Polymer BrushMACROMOLECULAR THEORY AND SIMULATIONS, Issue 4 2003Victor M. Amoskov Abstract An analytical theory describing layers of polymer chains grafted to a planar surface (i.e. polymer brush) is developed. We consider a brush of chains with finite extensibility (or non-Gaussian brush) within the framework of molecular field theory. An analytical solution for free energy of the brush and a few other brush characteristics are obtained and studied. Comparison with other known models of a brush is also made. Chain extensibility E(x, y) for Gaussian model (dashed lines) and BCC model (solid lines) for a few chain end positions y (numbers near curves). [source] Poly(2-(dimethylamino)ethyl methacrylate) Brushes with Incorporated Nanoparticles as a SERS Active Sensing LayerADVANCED FUNCTIONAL MATERIALS, Issue 11 2010Smrati Gupta Abstract A simple, fast, and versatile approach to the fabrication of outstanding surface enhanced Raman spectroscopy (SERS) substrates by exploiting the optical properties of the Ag nanoparticles and functional as well as organizational characteristics of the polymer brushes is reported. First, poly(2-(dimethylamino)ethyl methacrylate) brushes are synthesized directly on glassy carbon by self-initiated photografting and photopolymerization and thoroughly characterized in terms of their thickness, wettability, morphology, and chemical structure by means of ellipsometry, contact angle, AFM, and XPS, respectively. Second, Ag nanoparticles are homogeneously immobilized into the brush layer, resulting in a sensor platform for the detection of organic molecules by SERS. The surface enhancement factor (SEF) as determined by the detection of Rhodamine 6G is calculated as 6,×,106. [source] Formation of Hierarchically Structured Thin FilmsADVANCED FUNCTIONAL MATERIALS, Issue 14 2009Ming Wang Abstract Here, we report the preparation of hierarchically structured polymer brushes with well-defined geometries via multiple step microcontact printing (MS-µCP) of inks containing different ratios of initiator-terminated thiols and non-reactive alkylthiols. Thick (and dense), polymer brushes grew from self-assembled monolayers (SAMs) with high concentration of initiator-terminated thiols, and these brushes exhibited high chemical etch-resistance, compared to thin (and less dense), brushes grown from more dilute initiator-terminated SAMs. Upon etching, patterned crosslinking polymer brush films decorated with thin layers of Au, could be lifted off the surface to form geometrically well-defined free-standing hierarchical films. These polymer brush films showed interesting buckling instabilities when compressed. Areas with different brush thicknesses and Au backing showed markedly different buckling behavior, leading to unusual patterns of wrinkles with different wavelengths and orientations toward the force field. [source] Engineered Polymer Brushes by Carbon TemplatingADVANCED MATERIALS, Issue 28 2009Marin Steenackers A general method for the fabrication of stable polymer brushes of programmable three-dimensional shapes and different chemical functions is presented. The carbon templating method allows the functionalization of a broad variety of substrates without the need of a specific surface chemistry. As an example, the AFM scan of complex polymer brush structures on a bare GaAs substrate is shown. [source] In Pursuit of Zero: Polymer Brushes that Resist the Adsorption of ProteinsADVANCED MATERIALS, Issue 23 2009Angus Hucknall Abstract Protein resistant or "non-fouling" surfaces are of great interest for a variety of biomedical and biotechnology applications. This article briefly reviews the development of protein resistant surfaces, followed by recent research on a new methodology to fabricate non-fouling surfaces by surface-initiated polymerization. We show that polymer brushes synthesized by surface-initiated polymerization that present short oligo(ethylene glycol) side chains are exceptionally resistant to protein adsorption and cell adhesion. The importance of the protein and cell resistance conferred by these polymer brushes is illustrated by their use as substrates for the fabrication of antibody microarrays that exhibit femtomolar limits of detection in complex fluids such as serum and blood with relaxed requirements for intermediate wash steps. This example highlights the important point that the reduction in background noise afforded by protein-resistant surfaces can greatly simplify the development of ultrasensitive heterogeneous, surface-based clinical and proteomic assays with increased sensitivity and utility. [source] Self-Cleaning and Anti-Fog Surfaces via Stimuli-Responsive Polymer Brushes,ADVANCED MATERIALS, Issue 22 2007A. Howarter The wetting character of surfactant based polymer brushes is examined. The unique ability for the brush surfaces to be both hydrophilic and oleophobic rendered self-cleaning materials. [source] Synthesis and degradation of biomedical materials based on linear and star shaped polyglycidolsJOURNAL OF POLYMER SCIENCE (IN TWO SECTIONS), Issue 13 2009Helmut Keul Abstract Linear and star shaped polyglycidols (synonym with polyglycerols) are prepared in a controlled ring opening polymerization of protected glycidols. Beside the molar mass and the polydispersity, the architecture of the polyglycidols is controlled by using mono- and multifunctional mono- and polydispers initiators. Copolymers of dissimilarly protected glycidols as well as copolymers with nonfunctional oxiranes were prepared by means of anionic polymerization while copolymers of protected glycidol with tetrahydrofuran were prepared by means of cationic polymerization. Polyethers with functional groups in the side chains (functional polyethers) with special emphasis on polyglycidols (containing hydroxymethyl groups in the side chains) were used to prepare multifunctional polymers and (hetero)grafted polymer brushes via chemical and enzyme catalyzed reaction. The potential of poly(glycidol- graft -,-caprolactone)- co -glycidol) prepared via enzyme catalyzed grafting of polyglycidols using ,-caprolactone as a monomer and Lipase B from Candida antarctica as a catalyst is presented. Finally, comparative degradation studies of densely and loosely grafted polyglycidols are presented and discussed. © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 47: 3209,3231, 2009 [source] Functional colloidal particles stabilized by layered silicate with hydrophilic face and hydrophobic polymer brushesJOURNAL OF POLYMER SCIENCE (IN TWO SECTIONS), Issue 6 2009Yani Wu Abstract In this study, we describe a new strategy for producing narrowly dispersed functional colloidal particles stabilized by a nanocomposite with hydrophilic clay faces and hydrophobic polystyrene (PS) brushes on the edges. This method involves preparation of polymer brushes on the edges of clay layers and Pickering suspension polymerization of styrene in the presence of the nanocomposites. PS brushes on the edges of clay layers were prepared by atom transfer radical polymerization. X-ray diffraction and thermogravimetric analysis results indicated that PS chains were grafted to the edges of clay platelets. Transmission electron microscope results showed that different morphologies of clay-PS particles could be obtained in different solvents. In water, clay-PS particles aggregated together, in which PS chains collapsed forming nanosized hydrophobic domains and hydrophilic clay faces stayed in aqueous phase. In toluene, clay-PS particles formed face-to-face structure. Narrowly dispersed PS colloidal particles stabilized by clay-PS were prepared by suspension polymerization. Because of the negatively charged clay particles on the surface, the zeta potential of the PS colloidal particles was negative. Positively charged poly(2-vinyl pyridine) (P2VP) chains were adsorbed to the surface of PS colloidal particles in aqueous solution at a low pH value, and gold nanoparticles were prepared in P2VP brushes. Such colloidal particles may find important applications in a variety of fields including waterborne adhesives, paints, catalysis of chemical reactions, and protein separation. © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 47: 1535,1543, 2009 [source] Solid-supported amphiphilic triblock copolymer membranes grafted from gold surfaceJOURNAL OF POLYMER SCIENCE (IN TWO SECTIONS), Issue 1 2009Ekaterina Rakhmatullina Abstract Gold-supported amphiphilic triblock copolymer brushes composed of two hydrophilic poly(2-hydroxyethyl methacrylate) (PHEMA) blocks and a hydrophobic poly(n -butyl methacrylate) (PBMA) middle part were synthesized using a surface-initiated ATRP. Attenuated total reflectance Fourier transform infrared spectroscopy, polarization modulation infrared reflection absorption spectroscopy (PM-IRRAS), ellipsometry, contact angle measurements, and atomic force microscopy were used for the characterization of PHEMA- co -PBMA- co -PHEMA brushes. The PM-IRRAS analysis revealed an increase of the chain tilt toward the gold surface during growth of the individual blocks. We suggest that the orientation of the amphiphilic polymer brushes is influenced by both the chain length and the interchain interactions. Additionally, a detachment of the polymer membranes from the solid support and subsequent gel permeation chromatography analyses allowed us to establish their compositions. We applied block-selective solvents (water and hexane) as well as a good solvent for the whole polymer chain (ethanol) to study the morphology and solvent responsive behavior of the amphiphilic brushes. The presented results could serve as a good starting point for the fabrication of functional solid-supported membranes for biosensing applications. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 47: 1,13, 2009 [source] Synthesis of PS and PDMAEMA mixed polymer brushes on the surface of layered silicate and their application in pickering suspension polymerizationJOURNAL OF POLYMER SCIENCE (IN TWO SECTIONS), Issue 24 2007Yongfang Yang Abstract An ammonium free radical initiator was ion exchanged onto the surface of clay layers. Polystyrene (PS) and poly(2-(dimethylamino)ethyl methacrylate) (PDMAEMA) mixed polymer brushes on the surface of clay layers were prepared by in situ free radical polymerization. PS colloid particles armored by clay layers with mixed polymer brushes were prepared by Pickering suspension polymerization. Transmission electron microscopy (TEM), atomic force microscopy (AFM), and scanning electron microscopy (SEM) were used to characterize the structure and morphology of the colloid particles. Clay layers on the surface of PS colloid particles can be observed. Because of the cationic nature of the PDMAEMA brushes the colloid particles have positive zeta potentials at low pH values. X-ray photoelectron spectroscopy (XPS) was used to analyze the surface of the colloid particles. N1s binding energy of PDMAEMA chains on the surface of clay layers was detected by XPS. The two peaks of the N1s binding energy indicate two different nitrogen environments on the surface of clay layers. The peak with a lower binding energy is characteristic of neutral nitrogen on PDMAEMA chains, and the peak with a higher binding energy is attributed to protonated nitrogen on PDMAEMA chains. © 2007 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 5759,5769, 2007 [source] PS/PMMA mixed polymer brushes on the surface of clay layers: Preparation and application in polymer blendsJOURNAL OF POLYMER SCIENCE (IN TWO SECTIONS), Issue 22 2007Jian Zhang Abstract Polystyrene (PS) and poly(methyl methacrylate) (PMMA) mixed polymer brushes on the surface of clay layers were prepared by using in situ free radical polymerization. Free radical initiator molecules with two quaternary ammonium groups at both ends were intercalated into the interlayer spacing of clay layers. The amount of polymer brushes grafted on the surface of clay layers can be controlled by controlling the polymerization time. Thermogravimetric analysis, X-ray diffraction, and high-resolution transmission electron microscope results indicated successful preparation of the mixed polymer brushes on the surface of clay layers. The kinetics of the grafting of the monomers was also studied. The mixed polymer brushes on the surface of clay layers were used as compatibilizers in blends of PS and PMMA. In the blends, the intercalated clay particles tend to locate at the interface of two phases reducing the interfacial tension. In the meanwhile, PMMA homopolymer chains tend to intercalate into clay layers. The driving force for the intercalation is the compatibility between homo-PMMA chains and PMMA brushes on the surface of clay layers. © 2007 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 5329,5338, 2007 [source] |