Polyketide Synthase (polyketide + synthase)

Distribution by Scientific Domains
Distribution within Chemistry

Kinds of Polyketide Synthase

  • i polyketide synthase
  • iii polyketide synthase
  • modular polyketide synthase
  • type i polyketide synthase
  • type iii polyketide synthase

  • Selected Abstracts

    The Final Steps of Bacillaene Biosynthesis in Bacillus amyloliquefaciens FZB42: Direct Evidence for ,,,,Dehydration by a trans -Acyltransferase Polyketide Synthase,

    ANGEWANDTE CHEMIE, Issue 8 2010
    Jana Moldenhauer
    Auf frischer Tat ertappt: Das Engineering genetischer Reaktionspfade zusammen mit der HPLC/NMR-spektroskopischen Untersuchung sehr labiler Intermediate lieferte direkte Belege für den Aufbau von ,,,-Doppelbindungen während der Polyketidverlängerung zum Antibiotikum Bacillaen. Des Weiteren wurde das neuartige Kongener Bacillaen,B (1) als schwierig nachzuweisendes wahres Endprodukt des Pfades in Bacillus amyloliquefaciens entdeckt. [source]

    Improved Catalytic Activity of a Purified Multienzyme from a Modular Polyketide Synthase after Coexpression with Streptomyces Chaperonins in Escherichia coli.

    CHEMBIOCHEM, Issue 18 2008
    Lorena Betancor
    Folding helpers: Coexpression of Streptomyces coelicolor chaperonins GroEL1, GroEL2 and GroES with an actinomycete-derived polyketide synthase multienzyme in Escherichia coli has beneficial effects on yield, folding and specific activity of the purified enzyme. The results strongly suggest the utility of chaperones derived from polyketide-producing actinomycete bacteria in optimising the recombinant production of PKS proteins in E. coli for detailed studies of structure and function. [source]

    Structure and Biosynthesis of Myxochromides S1,3 in Stigmatella aurantiaca: Evidence for an Iterative Bacterial Type I Polyketide Synthase and for Module Skipping in Nonribosomal Peptide Biosynthesis,

    CHEMBIOCHEM, Issue 2 2005
    Silke C. Wenzel Dipl.-Chem.
    Abstract The myxobacterium Stigmatella aurantiaca DW4/3,1 harbours an astonishing variety of secondary metabolic gene clusters, at least two of which were found by gene inactivation experiments to be connected to the biosynthesis of previously unknown metabolites. In this study, we elucidate the structures of myxochromides S1,3, novel cyclic pentapeptide natural products possessing unsaturated polyketide side chains, and identify the corresponding biosynthetic gene locus, made up of six nonribosomal peptide synthetase modules. By analyzing the deduced substrate specificities of the adenylation domains, it is shown that module 4 is most probably skipped during the biosynthetic process. The polyketide synthase MchA harbours only one module and is presumably responsible for the formation of the variable complete polyketide side chains. These data indicate that MchA is responsible for an unusual iterative polyketide chain assembly. [source]

    Identification of potentially toxic environmental Microcystis by individual and multiple PCR amplification of specific microcystin synthetase gene regions

    Youness Ouahid
    Abstract Reliable cyanotoxin monitoring in water reservoirs is difficult because of, among other reasons, unpredictable changes in cyanobacteria biomass, toxin production, and inadequate sampling frequency. Therefore, it would be useful to identify potentially microcystin-producing strains of cyanobacterial populations in field samples. With this aim, we developed a methodology to distinguish microcystin-producing from non-producing Microcystis strains by amplifying six characteristic segments of the microcystin synthetase mcy cluster, three corresponding to the nonribosomal peptide synthetase, genes mcyA, mcyB, and mcyC, and three to the polyketide synthase, genes mcyD, mcyE, and mcyG. For this purpose five new primer sets were designed and tested using purified DNA, cultured cells, and field colonies as DNA sources. Simultaneous amplification of several genes in multipex PCR reactions was performed in this study. The results obtained showed that: (i) the expected specific amplicons were obtained with all microcystin-producing strains but not with nonproducing strains; (ii) cells could be directly used as DNA templates, 2000 cells being a sufficient number in most cases; (iii) simultaneous amplification of several gene regions is feasible both with cultured cells and with field colonies. Our data support the idea that the presence of various mcy genes in Microcystis could be used as a criterion for ascribing potential toxigenicity to field strains, and the possibility of applying whole-cell assays for the simultaneous amplification of various genes may contribute significantly to simplifying toxigenicity testing. © 2005 Wiley Periodicals, Inc. Environ Toxicol 20: 235,242, 2005. [source]

    Cosmopolitan distribution of phlD -containing dicotyledonous crop-associated biocontrol pseudomonads of worldwide origin

    Chunxia Wang
    Abstract In biocontrol fluorescent pseudomonads, phlD encodes a polyketide synthase required for the synthesis of the antifungal compound 2,4-diacetylphloroglucinol (Phl). Here, PCR-restriction fragment length polymorphism analysis was used to compare phlD alleles in 77 dicot-associated pseudomonads originating from various countries worldwide and 10 counterparts from a monocotyledonous host (wheat). The 16 restriction patterns obtained were mostly unrelated to geographic location or dicot host. Cluster analysis distinguished eight phlD clusters at a similarity level of 0.63. One cluster grouped 18 pseudomonads that produced also the antifungal polyketide pyoluteorin but could not assimilate D -galactose, D -galactonate lactone, D -sorbitol, L -arabinose, D -saccharate or D -xylose. These 18 pseudomonads, along with the eight pseudomonads from a second phlD cluster, were the only isolates that failed to deaminase 1-aminocyclopropane-1-carboxylate (ACC), a rare root growth promotion trait. Overall, assessment of phlD polymorphism, ACC deaminase activity and catabolic profiles pointed to a cosmopolitan distribution of Phl-producing biocontrol fluorescent pseudomonads of worldwide origin associated with dicotyledonous crop plants. [source]

    Analysis of intracellular short organic acid-coenzyme A esters from actinomycetes using liquid chromatography-electrospray ionization-mass spectrometry

    Je Won Park
    Abstract A method employing silicone oil density centrifugation, solid-phase extraction (SPE) cleanup, and LC-ESI-MS/MS analysis was developed for the rapid, selective, sensitive, and quantitative detection of an intracellular pool of short organic acid-CoA esters in actinomycetes. The detection limit was determined to be approximately 0.8 pmol (1.2 ng/ml) for each standard CoA-ester analyzed by the present LC-ESI-MS/MS method. A selected ion chromatogram for a typical fragment ion (m/z 428) specific to CoA-esters enabled the detection of eight intracellular CoA-esters involved in both primary and secondary metabolisms. The application of this method to bacterial metabolomic study is demonstrated by the profiling of the intracellular CoA-ester pools in the wild-type Streptomyces venezuelae strain producing polyketide antibiotics (methymycin and pikromycin), a polyketide synthase (PKS)-deleted S. venezuelae mutant, and a S. venezuelae mutant expressing the heterologous PKS genes. By quantifying the individual CoA-esterlevel in three different genotypes of the S. venezuela e strain, further insight could be gained into the role of CoA-estersin polyketide biosynthesis. This analytical approach can be extended to the quantification of the size and composition of in vivo CoA-ester pools in various microbes, and can provide a detailed understanding of the relationship between the in vivo CoA-ester pool and the production of pharmaceutically important polyketides. Copyright © 2007 John Wiley & Sons, Ltd. [source]

    Solution structure and proposed domain,domain recognition interface of an acyl carrier protein domain from a modular polyketide synthase

    PROTEIN SCIENCE, Issue 10 2007
    Viktor Y. Alekseyev
    Abstract Polyketides are a medicinally important class of natural products. The architecture of modular polyketide synthases (PKSs), composed of multiple covalently linked domains grouped into modules, provides an attractive framework for engineering novel polyketide-producing assemblies. However, impaired domain,domain interactions can compromise the efficiency of engineered polyketide biosynthesis. To facilitate the study of these domain,domain interactions, we have used nuclear magnetic resonance (NMR) spectroscopy to determine the first solution structure of an acyl carrier protein (ACP) domain from a modular PKS, 6-deoxyerythronolide B synthase (DEBS). The tertiary fold of this 10-kD domain is a three-helical bundle; an additional short helix in the second loop also contributes to the core helical packing. Superposition of residues 14,94 of the ensemble on the mean structure yields an average atomic RMSD of 0.64 ± 0.09 Å for the backbone atoms (1.21 ± 0.13 Å for all non-hydrogen atoms). The three major helices superimpose with a backbone RMSD of 0.48 ± 0.10 Å (0.99 ± 0.11 Å for non-hydrogen atoms). Based on this solution structure, homology models were constructed for five other DEBS ACP domains. Comparison of their steric and electrostatic surfaces at the putative interaction interface (centered on helix II) suggests a model for protein,protein recognition of ACP domains, consistent with the previously observed specificity. Site-directed mutagenesis experiments indicate that two of the identified residues influence the specificity of ACP recognition. [source]

    Current Progress in the Fatty Acid Metabolism in Cryptosporidium parvum,

    ABSTRACT Cryptosporidium parvum is one of the apicomplexans that can cause severe diarrhea in humans and animals. The slow development of anti-cryptosporidiosis chemotherapy is primarily due to the poor understanding on the basic metabolic pathways in this parasite. Many well-defined or promising drug targets found in other apicomplexans are either absent or highly divergent in C. parvum. The recently discovered apicoplast and its associated Type n fatty acid synthetic enzymes in Plasmodium, Toxoplasma, and Eimeria apicomplexans are absent in C. parvum, suggesting this parasite is unable to synthesize fatty acids de novo. However, C. parvum possesses a giant Type I fatty acid synthase (CpFASl) that makes very long chain fatty acids using mediate or long chain fatty acids as precursors. Cryptosporidium also contains a Type I polyketide synthase (CpPKSl) that is probably involved in the production of unknown polyketide(s) from a fatty acid precursor. In addition to CpFASl and CpPKSl, a number of other enzymes involved in fatty acid metabolism have also been identified. These include a long chain fatty acyl elongase (LCE), a cytosolic acetyl-CoA carboxylase (ACCase), three acyl-CoA synthases (ACS), and an unusual "long-type" acyl-CoA binding protein (ACBP), which allows us to hypothetically reconstruct the highly streamlined fatty acid metabolism in this parasite. However, C. parvum lacks enzymes for the oxidation of fatty acids, indicating that fatty acids are not an energy source for this parasite. Since fatty acids are essential components of all biomembranes, molecular and functional studies on these critical enzymes would not only deepen our understanding on the basic metabolism in the parasites, but also point new directions for the drug discovery against C. parvum and other apicomplexan-based diseases. [source]

    Expression, purification and crystallization of a plant type III polyketide synthase that produces diarylheptanoids

    Hiroyuki Morita
    Curcuminoid synthase (CUS) from Oryza sativa is a plant-specific type III polyketide synthase that catalyzes the one-pot formation of bisdemethoxycurcumin by the condensation of two molecules of 4-coumaroyl-CoA and one molecule of malonyl-CoA. Recombinant CUS was expressed in Escherichia coli and crystallized by the sitting-drop vapour-diffusion method. The crystals belonged to space group P21, with unit-cell parameters a = 72.7, b = 97.2, c = 126.2,Å, , = , = 90.0, , = 103.7°. A diffraction data set was collected in-house to 2.5,Å resolution. [source]

    Biosynthesis of lovastatin and related metabolites formed by fungal iterative PKS enzymes

    BIOPOLYMERS, Issue 9 2010
    Chantel D. Campbell
    Abstract The fungal polyketide lovastatin is a cholesterol lowering agent that is an immediate precursor to a multi-billion dollar drug, simvastatin (ZocorÔ). Lovastatin is produced by an iterative type I polyketide synthase known as LovB and a partner enoyl reductase (LovC). There is evidence that a Diels-Alderase enzyme activity is utilized in its biosynthesis. This review examines the biosynthesis of lovastatin, as well as of compactin, equisetin, cytochalasins, and solanapyrones, which are other structurally related polyketides that appear to utilize a Diels-Alderase. © 2010 Wiley Periodicals, Inc. Biopolymers 93: 755,763, 2010. [source]

    PKSP-dependent reduction of phagolysosome fusion and intracellular kill of Aspergillus fumigatus conidia by human monocyte-derived macrophages

    Bernhard Jahn
    Summary Previously, we described the isolation of an Aspergillus fumigatus mutant producing non-pigmented conidia, as a result of a defective polyketide synthase gene, pksP (polyketide synthase involved in pigment biosynthesis). The virulence of the pksP mutant was attenuated in a murine animal infection model and its conidia showed enhanced susceptibility towards damage by monocytes in vitro. Because macrophage-mediated killing is critical for host resistance to aspergillosis, the interaction of both grey-green wild-type conidia and white pksP mutant conidia with human monocyte-derived macrophages (MDM) was studied with respect to intracellular processing of ingested conidia. After phagocytosis, the percentage of wild-type conidia residing in an acidic environment was approximately fivefold lower than that observed for non-pigmented pksP mutant conidia. The phagolysosome formation, as assessed by co-localization of LAMP-1 and cathepsin D with ingested conidia, was significantly lower for wild-type conidia compared with pksP mutant conidia. Furthermore, the intracellular kill of pksP mutant conidia was significantly higher than of wild-type conidia, which was markedly increased by chloroquine, a known enhancer of phagolysosome fusion. Taken together, these findings suggest that the presence of a functional pksP gene in A. fumigatus conidia is associated with an inhibition of phagolysosome fusion in human MDM. These data show for the first time that a fungus has the capability to inhibit the fusion of the phagosome with the lysosome. This finding might help explain the attenuated virulence of pksP mutant strains in a murine animal model and provides a conceptual frame to understand the virulence of A. fumigatus. [source]

    Elucidation of Oxygenation Steps during Oviedomycin Biosynthesis and Generation of Derivatives with Increased Antitumor Activity

    CHEMBIOCHEM, Issue 2 2009
    Felipe Lombó Dr.
    Abstract Eight different angucyclinones have been produced in Streptomyces albus by combining three oxygenase genes together with the polyketide synthase and cyclases genes from the oviedomycin biosynthetic gene cluster from Streptomyces antibioticus ATCC 11891. Four of these compounds were fully characterized for the first time. Three of these angucyclinones,prejadomycin-2-carboxylate (2), 4a,12b-dehydro-UWM6 (5), and prejadomycin (3),show a significant increase in their in vitro antitumor activity relative to oviedomycin (1). A hypothesis for the sequence of tailoring events catalyzed by these three oxygenases during oviedomycin biosynthesis is proposed. In this hypothesis OvmOII acts as a bifunctional oxygenase/dehydratase. [source]

    A Polylinker Approach to Reductive Loop Swaps in Modular Polyketide Synthases

    CHEMBIOCHEM, Issue 16 2008
    Laurenz Kellenberger Dr.
    Abstract Multiple versions of the DEBS 1-TE gene, which encodes a truncated bimodular polyketide synthase (PKS) derived from the erythromycin-producing PKS, were created by replacing the DNA encoding the ketoreductase (KR) domain in the second extension module by either of two synthetic oligonucleotide linkers. This made available a total of nine unique restriction sites for engineering. The DNA for donor "reductive loops," which are sets of contiguous domains comprising either KR or KR and dehydratase (DH), or KR, DH and enoylreductase (ER) domains, was cloned from selected modules of five natural PKS multienzymes and spliced into module 2 of DEBS 1-TE using alternative polylinker sites. The resulting hybrid PKSs were tested for triketide production in vivo. Most of the hybrid multienzymes were active, vindicating the treatment of the reductive loop as a single structural unit, but yields were dependent on the restriction sites used. Further, different donor reductive loops worked optimally with different splice sites. For those reductive loops comprising DH, ER and KR domains, premature TE-catalysed release of partially reduced intermediates was sometimes seen, which provided further insight into the overall stereochemistry of reduction in those modules. Analysis of loops containing KR only, which should generate stereocentres at both C-2 and C-3, revealed that the 3-hydroxy configuration (but not the 2-methyl configuration) could be altered by appropriate choice of a donor loop. The successful swapping of reductive loops provides an interesting parallel to a recently suggested pathway for the natural evolution of modular PKSs by recombination. [source]

    In vivo Mutational Analysis of the Mupirocin Gene Cluster Reveals Labile Points in the Biosynthetic Pathway: the "Leaky Hosepipe" Mechanism

    CHEMBIOCHEM, Issue 9 2008
    Ji'en Wu Dr.
    Abstract A common feature of the mupirocin and other gene clusters of the AT-less polyketide synthase (PKS) family of metabolites is the introduction of carbon branches by a gene cassette that contains a ,-hydroxy-,-methylglutaryl CoA synthase (HMC) homologue and acyl carrier protein (ACP), ketosynthase (KS) and two crotonase superfamily homologues. In vivo studies of Pseudomonas fluorescens strains in which any of these components have been mutated reveal a common phenotype in which the two major isolable metabolites are the truncated hexaketide mupirocin H and the tetraketide mupiric acid. The structure of the latter has been confirmed by stereoselective synthesis. Mupiric acid is also the major metabolite arising from inactivation of the ketoreductase (KR) domain of module 4 of the modular PKS. A number of other mutations in the tailoring region of the mupirocin gene cluster also result in production of both mupirocin H and mupiric acid. To explain this common phenotype we propose a mechanistic rationale in which both mupirocin H and mupiric acid represent the products of selective and spontaneous release from labile points in the pathway that occur at significant levels when mutations block the pathway either close to or distant from the labile points. [source]

    Engineered Biosynthesis of Phenyl-Substituted Polyketides

    CHEMBIOCHEM, Issue 8 2004
    José Garcia-Bernardo Dr.
    Polyketide derivatives, such as 1, are obtained in enhanced yield from added benzoate by coexpressing in Saccharopolyspora erythraea a hybrid erythromycin,soraphen polyketide synthase (PKS) together with benzoate:CoA ligase from the enterocin-producing (enc) pathway of a marine streptomycete. Remarkably, coexpression of the single gene encP encoding phenylalanine ammonia lyase is sufficient to produce the PKS primer benzoyl-CoA in S. erythraea from endogenous L -phenylalanine without any need to supply precursors in the medium. [source]

    The emergence of Beijing family genotypes of Mycobacterium tuberculosis and low-level protection by bacille Calmette,Guérin (BCG) vaccines: is there a link?

    F. Abebe
    Summary The world is confronted with major tuberculosis (TB) outbreaks at a time when the protection of bacillus Calmette,Guérin (BCG) vaccine has become inconsistent and controversial. Major TB outbreaks are caused by a group of genetically similar strains of Mycobacterium tuberculosis (Mtb) strains, including the Beijing family genotypes. The Beijing family genotypes exhibit important pathogenic features such high virulence, multi-drug resistance and exogenous reinfection. These family strains have developed mechanisms that modulate/suppress immune responses by the host, such as inhibition of apoptosis of infected macrophages, diminished production of interleukin (IL)-2, interferon (IFN)-,, tumour necrosis factor (TNF)-, and elevated levels of IL-10 and IL-18. They demonstrate distinct expression of proteins, such as several species of ,-crystallin (a known Mtb virulence factor), but decreased expression of some antigens such as heat shock protein of 65 kDa, phosphate transport subunit S and a 47-kDa protein. In addition, the Beijing family strains specifically produce a highly bioactive lipid (a polyketide synthase)-derived phenolic glycolipid. This altered expression of proteins/glycolipids may be important factors underlying the success of the Beijing family strains. The Beijing family strains are speculated to have originated from South-east Asia, where BCG vaccination has been used for more than 60 years. The hypothesis that mass BCG vaccination may have been a selective factor that favoured genotypic and phenotypic characteristic acquired by the Beijing family strains is discussed. [source]

    Towards clarification of the biological role of microcystins, a family of cyanobacterial toxins

    Daniella Schatz
    Summary Microcystins constitute a serious threat to the quality of drinking water worldwide. These protein phosphatase inhibitors are formed by various cyanobacterial species, including Microcystis sp. Microcystins are produced by a complex microcystin synthetase, composed of peptide synthetases and polyketide synthases, encoded by the mcyA-J gene cluster. Recent phylogenetic analysis suggested that the microcystin synthetase predated the metazoan lineage, thus dismissing the possibility that microcystins emerged as a means of defence against grazing, and their original biological role is not clear. We show that lysis of Microcystis cells, either mechanically or because of various stress conditions, induced massive accumulation of McyB and enhanced the production of microcystins in the remaining Microcystis cells. A rise in McyB content was also observed following exposure to microcystin or the protease inhibitors micropeptin and microginin, also produced by Microcystis. The extent of the stimulation by cell extract was strongly affected by the age of the treated Microcystis culture. Older cultures, or those recently diluted from stock cultures, hardly responded to the components in the cell extract. We propose that lysis of a fraction of the Microcystis population is sensed by the rest of the cells because of the release of non-ribosomal peptides. The remaining cells respond by raising their ability to produce microcystins thereby enhancing their fitness in their ecological niche, because of their toxicity. [source]

    Novel type III polyketide synthases from Aloe arborescens

    FEBS JOURNAL, Issue 8 2009
    Yuusuke Mizuuchi
    Aloe arborescens is a medicinal plant rich in aromatic polyketides, such as pharmaceutically important aloenin (hexaketide), aloesin (heptaketide) and barbaloin (octaketide). Three novel type III polyketide synthases (PKS3, PKS4 and PKS5) were cloned and sequenced from the aloe plant by cDNA library screening. The enzymes share 85,96% amino acid sequence identity with the previously reported pentaketide chromone synthase and octaketide synthase. Recombinant PKS4 and PKS5 expressed in Escherichia coli were functionally identical to octaketide synthase, catalyzing the sequential condensations of eight molecules of malonyl-CoA to produce octaketides SEK4/SEK4b. As in the case of octaketide synthase, the enzymes are possibly involved in the biosynthesis of the octaketide barbaloin. On the other hand, PKS3 is a multifunctional enzyme that produces a heptaketide aloesone (i.e. the aglycone of aloesin) as a major product from seven molecules of malonyl-CoA. In addition, PKS3 also afforded a hexaketide pyrone (i.e. the precursor of aloenin), a heptaketide 6-(2-acetyl-3,5-dihydroxybenzyl)-4-hydroxy-2-pyrone, a novel heptaketide 6-(2-(2,4-dihydroxy-6-methylphenyl)-2-oxoethyl)-4-hydroxy-2-pyrone and octaketides SEK4/SEK4b. This is the first demonstration of the enzymatic formation of the precursors of the pharmaceutically important aloesin and aloenin by a wild-type PKS obtained from A. arborescens. Interestingly, the aloesone-forming activity was maximum at 50 °C, and the novel heptaketide pyrone was non-enzymatically converted to aloesone. In PKS3, the active-site residue 207, which is crucial for controlling the polyketide chain length depending on the steric bulk of the side chain, is uniquely substituted with Ala. Site-directed mutagenesis demonstrated that the A207G mutant dominantly produced the octaketides SEK4/SEK4b, whereas the A207M mutant yielded a pentaketide 5,7-dihydroxy-2-methylchromone. [source]

    Solution structure and proposed domain,domain recognition interface of an acyl carrier protein domain from a modular polyketide synthase

    PROTEIN SCIENCE, Issue 10 2007
    Viktor Y. Alekseyev
    Abstract Polyketides are a medicinally important class of natural products. The architecture of modular polyketide synthases (PKSs), composed of multiple covalently linked domains grouped into modules, provides an attractive framework for engineering novel polyketide-producing assemblies. However, impaired domain,domain interactions can compromise the efficiency of engineered polyketide biosynthesis. To facilitate the study of these domain,domain interactions, we have used nuclear magnetic resonance (NMR) spectroscopy to determine the first solution structure of an acyl carrier protein (ACP) domain from a modular PKS, 6-deoxyerythronolide B synthase (DEBS). The tertiary fold of this 10-kD domain is a three-helical bundle; an additional short helix in the second loop also contributes to the core helical packing. Superposition of residues 14,94 of the ensemble on the mean structure yields an average atomic RMSD of 0.64 ± 0.09 Å for the backbone atoms (1.21 ± 0.13 Å for all non-hydrogen atoms). The three major helices superimpose with a backbone RMSD of 0.48 ± 0.10 Å (0.99 ± 0.11 Å for non-hydrogen atoms). Based on this solution structure, homology models were constructed for five other DEBS ACP domains. Comparison of their steric and electrostatic surfaces at the putative interaction interface (centered on helix II) suggests a model for protein,protein recognition of ACP domains, consistent with the previously observed specificity. Site-directed mutagenesis experiments indicate that two of the identified residues influence the specificity of ACP recognition. [source]

    Crystallization and preliminary X-ray crystallographic investigations of an unusual type III polyketide synthase PKS18 from Mycobacterium tuberculosis

    Raju Rukmini
    The biosynthetic machinery of polyketide synthases involves various sequential enzymatic reactions, such as initiation, elongation and cyclization, to produce polyketides. PKS18 protein from Mycobacterium tuberculosis belongs to the type III polyketide synthase family and displays an unusual starter-unit specificity to catalyze the formation of ,-pyrones. This enzyme uses malonyl-CoA to iteratively extend long-chain aliphatic coenzyme A (C12 to C20) molecules, producing triketide and tetraketide pyrone products. In order to aid in understanding the structural basis of this long-chain specificity and to further characterize the enzymatic mechanism of PKS18, the protein has been crystallized. The crystal belongs to the triclinic space group P1, with unit-cell parameters a = 59.9, b = 80.7, c = 99.6,Å, , = 108.2, , = 93.0, , = 103.7°. [source]

    Recent advancements in the biosynthetic mechanisms for polyketide-derived mycotoxins

    BIOPOLYMERS, Issue 9 2010
    Justin Huffman
    Abstract Polyketides (PKs) are a large group of natural products produced by microorganisms and plants. They are biopolymers of acetate and other short carboxylates and are biosynthesized by multifunctional enzymes called polyketide synthases (PKSs). This review discusses the biosynthesis of four toxic PK, aflatoxins, fumonisins, ochratoxins (OTs), and zearalenone. These metabolites are structurally diverse and differ in their mechanisms of toxicity. However, they are all of concern in food safety and agriculture because of their toxic properties and their frequent accumulation in crops used for food and feed. The focus is on the recent advancements in the understanding of the molecular mechanisms for the biosynthesis of these mycotoxins. Several of the mycotoxin PKSs have been genetically and biochemically studied while other PKSs remain to be investigated. Multiple post-PKS modifications are often required for the maturation of the mycotoxins. Many of these modification steps for aflatoxins and fumonisins are well established while the post-PKS modifications for zearalenone and OTs remain to be biochemically characterized. More efforts are needed to completely illustrate the biosynthetic mechanisms for this important group of PKs. © 2010 Wiley Periodicals, Inc. Biopolymers 93: 764,776, 2010. [source]

    Synthetic Strategy of Nonreducing Iterative Polyketide Synthases and the Origin of the Classical "Starter-Unit Effect"

    CHEMBIOCHEM, Issue 7 2008
    Jason M. Crawford Dr.
    Getting started: The starter-unit effect in fungal polyketides stems from starter unit:acyl-carrier protein transacylase (SAT) domains found in nonreducing polyketide synthases (PKSs). Dissection of the PKSs involved in the production of naphthopyrone YWA1, tetrahydroxynaphthalene, cercosporin, and bikaverin revealed that their SAT domains had high selectivity for acetyl-CoA (see figure); this provides a biochemical rationale for this classically observed effect. [source]

    Covalent Linkage Mediates Communication between ACP and TE Domains in Modular Polyketide Synthases

    CHEMBIOCHEM, Issue 6 2008
    Lucky Tran
    Abstract Polyketide natural products such as erythromycin A and epothilone are assembled on multienzyme polyketide synthases (PKSs), which consist of modular sets of protein domains. Within these type I systems, the fidelity of biosynthesis depends on the programmed interaction among the multiple domains within each module, centered around the acyl carrier protein (ACP). A detailed understanding of interdomain communication will therefore be vital for attempts to reprogram these pathways by genetic engineering. We report here that the interaction between a representative ACP domain and its downstream thioesterase (TE) is mediated largely by covalent tethering through a short "linker" region, with only a minor energetic contribution from protein,protein molecular recognition. This finding helps explain in part the empirical observation that TE domains can function out of their normal context in engineered assembly lines, and supports the view that overall PKS architecture may dictate at least a subset of interdomain interactions. [source]

    Myxovirescin A Biosynthesis is Directed by Hybrid Polyketide Synthases/Nonribosomal Peptide Synthetase, 3-Hydroxy-3-Methylglutaryl,CoA Synthases, and trans-Acting Acyltransferases

    CHEMBIOCHEM, Issue 8 2006
    Vesna Simunovic M.S.
    Abstract Myxococcus xanthus DK1622 is shown to be a producer of myxovirescin (antibiotic TA) antibiotics. The myxovirescin biosynthetic gene cluster spans at least 21 open reading frames (ORFs) and covers a chromosomal region of approximately 83 kb. In silico analysis of myxovirescin ORFs in conjunction with genetic studies suggests the involvement of four type I polyketide synthases (PKSs; TaI, TaL, TaO, and TaP), one major hybrid PKS/NRPS (Ta-1), and a number of monofunctional enzymes similar to the ones involved in type II fatty-acid biosyntesis (FAB). Whereas deletion of either taI or taL causes a dramatic drop in myxovirescin production, deletion of both genes (,taIL) leads to the complete loss of myxovirescin production. These results suggest that both TaI and TaL PKSs might act in conjunction with a methyltransferase, reductases, and a monooxygenase to produce the 2-hydroxyvaleryl,S,ACP starter that is proposed to act as the biosynthetic primer in the initial condensation reaction with glycine. Polymerization of the remaining 11 acetates required for lactone formation is directed by 12 modules of Ta-1, TaO, and TaP megasynthetases. All modules, except for the first module of TaL, lack cognate acyltransferase (AT) domains. Furthermore, deletion of a discrete tandem AT,encoded by taV,blocks myxovirescin production; this suggests an "in trans" mode of action. To embellish the macrocycle with methyl and ethyl moieties, assembly of the myxovirescin scaffold is proposed to switch twice from PKS to 3-hydroxy-3-methylglutaryl,CoA (HMG,CoA)-like biochemistry during biosynthesis. Disruption of the S -adenosylmethionine (SAM)-dependent methyltransferase, TaQ, shifts production toward two novel myxovirescin analogues, designated myxovirescin Qa and myxovirescin Qc. NMR analysis of purified myxovirescin Qa revealed the loss of the methoxy carbon atom. This novel analogue lacks bioactivity against E. coli. [source]

    The Structural Basis for Docking in Modular Polyketide Biosynthesis

    CHEMBIOCHEM, Issue 3 2006
    Kira J. Weissman Dr.
    Abstract Polyketide natural products such as erythromycin and rapamycin are assembled on polyketide synthases (PKSs), which consist of modular sets of catalytic activities distributed across multiple protein subunits. Correct protein,protein interactions among the PKS subunits which are critical to the fidelity of biosynthesis are mediated in part by "docking domains" at the termini of the proteins. The NMR solution structure of a representative docking domain complex from the erythromycin PKS (DEBS) was recently solved, and on this basis it has been proposed that PKS docking is mediated by the formation of an intermolecular four - ,-helix bundle. Herein, we report the genetic engineering of such a docking domain complex by replacement of specific helical segments and analysis of triketide synthesis by mutant PKSs in vivo. The results of these helix swaps are fully consistent with the model and highlight residues in the docking domains that may be targeted to alter the efficiency or specificity of subunit,subunit docking in hybrid PKSs. [source]

    Conserved Amino Acid Residues Correlating With Ketoreductase Stereospecificity in Modular Polyketide Synthases

    CHEMBIOCHEM, Issue 7 2003
    Patrick Caffrey Dr.
    Getting down to specifics: Key amino acid residues were found to correlate with ketoreductase domain stereospecificity in modular polyketide synthases. These residues may allow alcohol stereochemistry (see scheme; ACP, acyl carrier protein) in polyketides to be predicted from ketoreductase sequences. The results also suggest that polyketide synthase dehydratase domains have a preference for 3hydroxyacyl substrates with the same alcohol stereochemistry as the (3R)-hydroxyacyl chains used by dehydratases in fatty acid synthases. [source]