Home About us Contact | |||
Pollen Deposition (pollen + deposition)
Selected AbstractsAlternative pollinator taxa are equally efficient but not as effective as the honeybee in a mass flowering cropJOURNAL OF APPLIED ECOLOGY, Issue 5 2009Romina Rader Summary 1. ,The honeybee Apis mellifera is currently in decline worldwide because of the combined impacts of Colony Collapse Disorder and the Varroa destructor mite. In order to gain a balanced perspective of the importance of both wild and managed pollination services, it is essential to compare these services directly, a priori, within a cropping landscape. This process will determine the capacity of other flower visitors to act as honeybee replacements. 2. ,In a highly modified New Zealand agricultural landscape, we compared the pollination services provided by managed honeybees to unmanaged pollinator taxa (including flies) within a Brassica rapa var. chinensis mass flowering crop. 3. ,We evaluate overall pollinator effectiveness by separating the pollination service into two components: efficiency (i.e. per visit pollen deposition) and visit rate (i.e. pollinator abundance per available flower and the number of flower visits per minute). 4. ,We observed 31 species attending flowers of B. rapa. In addition to A. mellifera, seven insect species visited flowers frequently. These were three other bees (Lasioglossum sordidum, Bombus terrestris and Leioproctus sp.) and four flies (Dilophus nigrostigma, Melanostoma fasciatum, Melangyna novae-zelandiae and Eristalis tenax). 5. ,Two bee species, Bombus terrestris and Leioproctus sp. and one fly, Eristalis tenax were as efficient as the honeybee and as effective (in terms of rate of flower visitation). A higher honeybee abundance, however, resulted in it being the more effective pollinator overall. 6. ,Synthesis and applications. Alternative land management practices that increase the population sizes of unmanaged pollinator taxa to levels resulting in visitation frequencies as high as A. mellifera, have the potential to replace services provided by the honeybee. This will require a thorough investigation of each taxon's intrinsic biology and a change in land management practices to ensure year round refuge, feeding, nesting and other resource requirements of pollinator taxa are met. [source] Effects of patch size and density on flower visitation and seed set of wild plants: a pan-European approachJOURNAL OF ECOLOGY, Issue 1 2010Jens Dauber Summary 1.,Habitat fragmentation can affect pollinator and plant population structure in terms of species composition, abundance, area covered and density of flowering plants. This, in turn, may affect pollinator visitation frequency, pollen deposition, seed set and plant fitness. 2.,A reduction in the quantity of flower visits can be coupled with a reduction in the quality of pollination service and hence the plants' overall reproductive success and long-term survival. Understanding the relationship between plant population size and/or isolation and pollination limitation is of fundamental importance for plant conservation. 3.,We examined flower visitation and seed set of 10 different plant species from five European countries to investigate the general effects of plant populations size and density, both within (patch level) and between populations (population level), on seed set and pollination limitation. 4.,We found evidence that the effects of area and density of flowering plant assemblages were generally more pronounced at the patch level than at the population level. We also found that patch and population level together influenced flower visitation and seed set, and the latter increased with increasing patch area and density, but this effect was only apparent in small populations. 5.,Synthesis. By using an extensive pan-European data set on flower visitation and seed set we have identified a general pattern in the interplay between the attractiveness of flowering plant patches for pollinators and density dependence of flower visitation, and also a strong plant species-specific response to habitat fragmentation effects. This can guide efforts to conserve plant,pollinator interactions, ecosystem functioning and plant fitness in fragmented habitats. [source] Severely reduced sexual reproduction in northern populations of a clonal plant, Decodonverticillatus (Lythraceae)JOURNAL OF ECOLOGY, Issue 3 2001Marcel E. Dorken Summary 1,In flowering plants the balance between sexual and clonal, asexual reproduction can vary widely. We quantified variation in sexual reproduction in a tristylous, clonal, aquatic plant, Decodon verticillatus, and investigated the role of ecological and genetic factors in causing this variation. 2,We surveyed components of sexual fertility and vegetative growth in 28 populations distributed along a 500-km latitudinal transect in New England, USA. Northerly populations tend to be monomorphic (M) for style length, and probably therefore have reduced sexual reproduction compared with southerly, trimorphic (T) populations. 3,Compared with T populations (n = 10), M populations (n = 18) exhibited large reductions for all components of sexual reproduction, including flower production, pollen deposition, pollen tube growth, fertilization, fruit set and seeds per fruit. Seven M populations produced no seed at all, and the other 11 very little (mean = 24 vs. 1139 seeds per plant in trimorphic populations). Clonal propagation was also greatly reduced in M populations. 4,A survey of three polymorphic allozyme loci detected only single, usually heterozygous, genotypes in 15 M populations, whereas all T populations were genotypically diverse. The other three M populations contained three or fewer genotypes and one always predominated. Sexual recruitment is therefore extremely rare. 5,Comparison of the sexual fertility of M and T populations in a concurrent common glasshouse experiment with our field data revealed that reduced sexual performance in northern M populations is principally due to genetic factors, but is also caused by ecological factors that covary with latitude. 6,This abrupt shift away from sexual reproduction in populations at the northern periphery of the geographical range in D. verticillatus may greatly limit their evolutionary potential and restrict further northward expansion. [source] Seasonality of modern pollen and sediment deposition in an estuarine context: the Severn Estuary Levels, southwest England,JOURNAL OF QUATERNARY SCIENCE, Issue 3 2008J. R. L. Allen Abstract Recent sedimentological and palynological research on subfossil Holocene banded sediments from the Severn Estuary Levels suggested seasonality of deposition, registered by variations in mineral grain-size and pollen assemblages between different parts of the bands. Here we provide data that strengthen this interpretation from sampling of modern sediments and pollen deposition on an active mudflat and saltmarsh on the margin of the Severn Estuary, and comparison with a vegetation survey and contemporary records of climate, river and tidal regimes. The results of grain-size analysis indicate deposition of comparatively coarse-grained silts during the relatively cool and windy conditions of winter and comparatively fine-grained sediments during relatively warm and calm summer months. Pollen analysis demonstrates the significance of long-term storage of pollen grains and fern spores in the estuarine waterbody, superimposed on which seasonal variations in pollen inputs from local and regional vegetation remain detectable. Copyright © 2007 John Wiley & Sons, Ltd. [source] A test for Allee effects in the self-incompatible wasp-pollinated milkweed Gomphocarpus physocarpusAUSTRAL ECOLOGY, Issue 6 2009GARETH COOMBS Abstract It has been suggested that plants that are good colonizers will generally have either an ability to self-fertilize or a generalist pollination system. This prediction is based on the idea that these reproductive traits should confer resistance to Allee effects in founder populations and was tested using Gomphocarpus physocarpus (Asclepiadoideae: Apocynaceae), a species native to South Africa that is invasive in other parts of the world. We found no significant relationships between the size of G. physocarpus populations and various measures of pollination success (pollen deposition, pollen removal and pollen transfer efficiency) and fruit set. A breeding system experiment showed that plants in a South African population are genetically self-incompatible and thus obligate outcrossers. Outcrossing is further enhanced by mechanical reconfiguration of removed pollinaria before the pollinia can be deposited. Self-pollination is reduced when such reconfiguration exceeds the average duration of pollinator visits to a plant. Observations suggest that a wide variety of wasp species in the genera Belonogaster and Polistes (Vespidae) are the primary pollinators. We conclude that efficient pollination of plants in small founding populations, resulting from their generalist wasp-pollination system, contributes in part to the colonizing success of G. physocarpus. The presence of similar wasps in other parts of the world has evidently facilitated the expansion of the range of this milkweed. [source] A framework for comparing pollinator performance: effectiveness and efficiencyBIOLOGICAL REVIEWS, Issue 3 2010Gidi Ne'eman Measuring pollinator performance has become increasingly important with emerging needs for risk assessment in conservation and sustainable agriculture that require multi-year and multi-site comparisons across studies. However, comparing pollinator performance across studies is difficult because of the diversity of concepts and disparate methods in use. Our review of the literature shows many unresolved ambiguities. Two different assessment concepts predominate: the first estimates stigmatic pollen deposition and the underlying pollinator behaviour parameters, while the second estimates the pollinator's contribution to plant reproductive success, for example in terms of seed set. Both concepts include a number of parameters combined in diverse ways and named under a diversity of synonyms and homonyms. However, these concepts are overlapping because pollen deposition success is the most frequently used proxy for assessing the pollinator's contribution to plant reproductive success. We analyse the diverse concepts and methods in the context of a new proposed conceptual framework with a modular approach based on pollen deposition, visit frequency, and contribution to seed set relative to the plant's maximum female reproductive potential. A system of equations is proposed to optimize the balance between idealised theoretical concepts and practical operational methods. Our framework permits comparisons over a range of floral phenotypes, and spatial and temporal scales, because scaling up is based on the same fundamental unit of analysis, the single visit. [source] Consumptive emasculation: the ecological and evolutionary consequences of pollen theftBIOLOGICAL REVIEWS, Issue 2 2009Anna L. Hargreaves ABSTRACT Many of the diverse animals that consume floral rewards act as efficient pollinators; however, others ,steal' rewards without ,paying' for them by pollinating. In contrast to the extensive studies of the ecological and evolutionary consequences of nectar theft, pollen theft and its implications remain largely neglected, even though it affects plant reproduction more directly. Here we review existing studies of pollen theft and find that: (1) most pollen thieves pollinate other plant species, suggesting that theft generally arises from a mismatch between the flower and thief that precludes pollen deposition, (2) bees are the most commonly documented pollen thieves, and (3) the floral traits that typically facilitate pollen theft involve either spatial or temporal separation of sex function within flowers (herkogamy and dichogamy, respectively). Given that herkogamy and dichogamy occur commonly and that bees are globally the most important floral visitors, pollen theft is likely a greatly under-appreciated component of floral ecology and influence on floral evolution. We identify the mechanisms by which pollen theft can affect plant fitness, and review the evidence for theft-induced ecological effects, including pollen limitation. We then explore the consequences of pollen theft for the evolution of floral traits and sexual systems, and conclude by identifying key directions for future research. [source] |