Polar Molecules (polar + molecule)

Distribution by Scientific Domains


Selected Abstracts


Prediction of pKa and redox properties in the thioredoxin superfamily

PROTEIN SCIENCE, Issue 10 2004
Efrosini Moutevelis
Abstract Electrostatic interactions play important roles in diverse biological phenomena controlling the function of many proteins. Polar molecules can be studied with the FDPB method solving the Poisson-Boltzmann equation on a finite difference grid. A method for the prediction of pKas and redox potentials in the thioredoxin superfamily is introduced. The results are compared with experimental pKa data where available, and predictions are made for members lacking such data. Studying CxxC motif variation in the context of different background structures permits analysis of contributions to cysteine ,pKas. The motif itself and the overall framework regulate pKa variation. The reported method includes generation of multiple side-chain rotamers for the CxxC motif and is an effective predictive tool for functional pKa variation across the superfamily. Redox potential follows the trend in cysteine pKa variation, but some residual discrepancy indicates that a pH-independent factor plays a role in determining redox potentials for at least some members of the superfamily. A possible molecular basis for this feature is discussed. [source]


On the molecular structure that produces the phosphorescence of 7-azaindole,

INTERNATIONAL JOURNAL OF QUANTUM CHEMISTRY, Issue 5 2005
J. Catalán
Abstract The structured phosphorescence with a 0,0 component at ,430 nm exhibited by 7-azaindole is not due to its monomer, its normal or tautomeric C2h dimer, or its oligomeric forms consisting of five monomers, but rather to a molecular structure resulting from the interaction of the C2h dimer with a polar molecule (7-azaindole itself, another solute or the solvent). Such an interaction breaks the C2h symmetry of 7-azaindole dimer, thereby facilitating the localization of the electronic excitation on one of the dimer molecules and resulting in the presence of dimers of C1 symmetry. Based on the results, the structure that produces this phosphorescence is a normal dimer exhibiting a double hydrogen bond but no symmetry constraint. Surprisingly, its first triplet state, T(DC1), is ,20 kcal/mol below the first triplet state for the system of C2h symmetry. © 2004 Wiley Periodicals, Inc. Int J Quantum Chem, 2005 [source]


Alkanethiols Modified Gold Electrodes for Selective Detection of Molecules with Different Polarity and Molecular Size.

ELECTROANALYSIS, Issue 3-5 2009
Application to Vitamin B2 Analysis
Abstract The cyclic voltammetry behavior of several molecules with different polarity and molecular size on gold electrodes modified with nonfunctionalized alkanethiols of different chain length, usually employed as chromatographic stationary phases, are studied. The redox systems hexacyanoferrate(II/III), ferrocene/ferrocine and hydroquinone/quinone are chosen as template molecules. As modifiers, ethanethiol, 1-octanethiol and di- n -octadecyldisulfide are selected. We can conclude that polar molecules can reach the electrode surface through channels created by the modifiers. However, when nonpolar compounds are analyzed, the nonpolar interactions between the analyte and the terminal group of the modifier lead to retention of the compound, retarding its arrival to the electrode surface. A molecule with polar and nonpolar part was used for the application of this conclusion. If the gold electrode is modified with di- n -octadecyldisulfide, the electrochemical behavior of vitamin B2 becomes simpler than that observed on a bare one. This result allows a sensitive and selective procedure to be developed for direct determination of vitamin B2 in pharmaceutical formulations. [source]


Polythiacrown Macro- and Gigantocycles with Chiral Diacetal Cores

EUROPEAN JOURNAL OF ORGANIC CHEMISTRY, Issue 12 2007
Sarah Abramson
Abstract We present a unique class of polythiacrown macro- and gigantocyclic[9] systems, consisting of ethylene 1,2-dithioglycol (ETG) to poly(ethylene thioglycol) (ETGn) bridges over one to six diacetal units of the cis -1,3,5,7-tetraoxadecalin (TOD) type. The latter is a dissymmetric, chiral moiety, incorporating a cavity with built-in high electron lone pair concentration, serving as the "core" of chiral macrocyclic host systems with good inclusion ability of ions and polar molecules. We describe two approaches: (i) the reactions of the 2,6-bis(bromomethyl)- cis -TOD podand (6) with ETG or higher ETGns (12n), in Cs2CO3 promoted processes, leading to the innate but uncontrolled formation of polythiacrown-TOD macrocycles having ETG/TOD ratios of 1:1 (7), 2:2 (8) and further 3:3,6:6 (111/m)10 macrocycles via open dithiol intermediates, and (ii) judicious preparation, using K2CO3, of oligomeric dibromide intermediates with ETGn:TOD ratios 1:2, 2:3 or 3:4 (14n/m), which led (with further ETGn) in a controlled way to the 2:2 (8n), or 3:3, 4:4 and 6:6 (11n/m) macro- and gigantocyclic systems. Altogether, the outcome of these processes depends on the relative concentrations of the reactants. Synthesis was accompanied by detailed (NMR and MS) spectroscopy. X-ray crystallographic analysis of a number of macrocycles, complemented by (MM & MD) computation, made possible valuable structural, stereochemical and conformational analysis. While sophisticated in their stereochemical features, these systems are readily prepared in enantiopure form and hold great promise of chemical reactivity in metal ion inclusion and molecular and chiral recognition.(© Wiley-VCH Verlag GmbH & Co. KGaA, 69451 Weinheim, Germany, 2007) [source]


Ferroelectric Response and Induced Biaxiality in the Nematic Phase of Bent-Core Mesogens

ADVANCED FUNCTIONAL MATERIALS, Issue 16 2009
Oriano Francescangeli
Abstract The still undiscovered fluid ferroelectric nematic phase is expected to exhibit a much faster and easier response to an external electric field compared to conventional ferroelectric smectic liquid crystals; therefore, the discovery of such a phase could open new avenues in electro-optic device technology. Here, experimental evidence of a ferroelectric response to a switching electric field in a low molar mass nematic liquid crystal is reported and connected with field-induced biaxiality. The fluid is made of bent-core polar molecules and is nematic over a range of 120,°C. Combining repolarization current measurements, electro-optical characterizations, X-ray diffraction and computer simulations, ferroelectric switching is demonstrated and it is concluded that the response is due to field-induced reorganization of polar cybotactic groups within the nematic phase. This work represents significant progress toward the realization of ferroelectric fluids that can be aligned at command with a simple electric field. [source]


Doping of Conjugated Polythiophenes with Alkyl Silanes

ADVANCED FUNCTIONAL MATERIALS, Issue 12 2009
Chi Yueh Kao
Abstract A strong modification of the electronic properties of solution-processable conjugated polythiophenes by self-assembled silane molecules is reported. Upon bulk doping with hydrolized fluoroalkyl trichlorosilane, the electrical conductivity of ultrathin polythiophene films increases by up to six orders of magnitude, reaching record values for polythiophenes: (1.1,±,0.1),×,103,S cm,1 for poly(2,5-bis(3-tetradecylthiophen -2-yl)thieno[3,2- b]thiophene) (PBTTT) and 50,±,20,S cm,1 for poly(3-hexyl)thiophene (P3HT). Interband optical absorption of the polymers in the doped state is drastically reduced, making these highly conductive films transparent in the visible range. The dopants within the porous polymer matrix are partially crosslinked via a silane self-polymerization mechanism that makes the samples very stable in vacuum and nonpolar environments. The mechanism of SAM-induced conductivity is believed to be based on protonic doping by the free silanol groups available within the partially crosslinked SAM network incorporated in the polythiophene structure. The SAM-doped polythiophenes exhibit an intrinsic sensing effect: a drastic and reversible change in conductivity in response to ambient polar molecules, which is believed to be due to the interaction of the silanol groups with polar analytes. The reported electronic effects point to a new attractive route for doping conjugated polymers with potential applications in transparent conductors and molecular sensors. [source]


Polar-Molecule-Dominated Electrorheological Fluids Featuring High Yield Stresses

ADVANCED MATERIALS, Issue 45 2009
Rong Shen
Abstract Recent works on the development of various electrorheological (ER) fluids composed of TiO2, SrTiO, and CaTiO particles coated with CO/HO polar groups are summarized, in which an extremely large yield stress up to 200,kPa is measured and the dynamical yield stress reaches 117,kPa at a shear rate of 775,s,1. Moreover, unlike that of traditional dielectric ER fluids, the yield stress displays a linear dependence on electric field strength. Experimental results reveal that it is the polar molecules adsorbed onto the dielectric particles that play the decisive role: the polar-molecule-dominated ER effect arises from the alignment of polar molecules by the enhanced local electric field in the gap between neighboring particles. The pretreatment of electrodes and the contrivance of new measuring procedures, which are desirable for the characterization and practical implementation of this material, are also discussed. The successful synthesis of these fluids has made many of the long since conceived applications of the ER effect available. [source]


Microcontact Printing: Limitations and Achievements

ADVANCED MATERIALS, Issue 22 2009
András Perl
Abstract Microcontact printing (µCP) offers a simple and low-cost surface patterning methodology with high versatility and sub-micrometer accuracy. The process has undergone a spectacular evolution since its invention, improving its capability to form sub-100,nm SAM patterns of various polar and apolar materials and biomolecules over macroscopic areas. Diverse development lines of µCP are discussed in this work detailing various printing strategies. New printing schemes with improved stamp materials render µCP a reproducible surface-patterning technique with an increased pattern resolution. New stamp materials and PDMS surface-treatment methods allow the use of polar molecules as inks. Flat elastomeric surfaces and low-diffusive inks push the feature sizes to the nanometer range. Chemical and supramolecular interactions between the ink and the substrate increase the applicability of the µCP process. [source]


A review on microwave baking of foods

INTERNATIONAL JOURNAL OF FOOD SCIENCE & TECHNOLOGY, Issue 2 2001
Gülüm Sumnu
Summary Microwaves interact with polar molecules and charged particles of food to generate heat. There are differences between the heating mechanisms of microwave and conventional heating. The use of microwave heating has the advantage of saving energy and time, improving both nutritional quality and acceptability of some foods by consumers. Microwave ovens are successfully used both in homes and in the food service industry. However, there are still problems in perfecting microwave baking, therefore it is a popular research area. The main problems found to occur in microwave-baked food products are low volume, tough or firm texture, lack of browning and flavour development. Recent studies aim to improve the quality of microwave-baked products. This article reviews the basic principles of microwave baking, problems commonly occurring in microwave-baked products and finally studies published concerning microwave-baked products. [source]


Modeling the semi-empirical electrotopological index in QSPR studies for aldehydes and ketones

JOURNAL OF CHEMOMETRICS, Issue 5 2009
Érica Silva Souza
Abstract The semi-empirical electrotopological index, ISET, used for quantitative structure,retention relationship (QSRR) models firstly developed for alkanes and alkenes, was remodeled for organic functions such as ketones and aldehydes. The ISET values for hydrocarbons are calculated through the atomic charge values obtained from a Mulliken population analysis using the semi-empirical AM1 method and their correlation with the SETi values attributed to the different types of carbon atoms according to experimental data. For ketones and aldehydes the interactions between the molecules and the stationary phase are slowly increased relative to the hydrocarbons, due to the charge redistribution that occurs in the presence of heteroatoms. For these polar molecules the increase in the interactions was included in the calculation of the ISET values through the dipole moment of the whole molecule and also through an equivalent local dipole moment related to the net charges of the atoms of the CO and HCO functional groups. Our findings show that the best definition of an equivalent local dipole moment is clearly dependent on the specific features of the charge distribution in the polar region of the molecules (e.g. ketones and aldehydes), which allows them to be distinguished. Thus, the QSRR models for 15 aldehydes and 42 ketones obtained using the remodeled ISET were of good quality as shown by the statistical parameters. The ability of this remodeled index to include charge distribution and structural details opens a new way to study the correlations between the molecular structure and retention indices in gas chromatography. Copyright © 2009 John Wiley & Sons, Ltd. [source]


Long-range and short-range mechanisms of hydrophobic attraction and hydrophilic repulsion in specific and aspecific interactions

JOURNAL OF MOLECULAR RECOGNITION, Issue 4 2003
Carel Jan van Oss
Abstract Among the three different non-covalent forces acting in aqueous media, i.e. Lifshitz,van der Waals (LW), Lewis acid,base (AB) and electrical double layer (EL) forces, the AB forces or electron,acceptor/electron,donor interactions are quantitatively by far the predominant ones. A subset of the AB forces acting in water causes the hydrophobic effect, which is the attraction caused by the hydrogen-bonding (AB) free energy of cohesion between the water molecules which surround all apolar as well as polar molecules and particles when they are immersed in water. As the polar energy of cohesion among water molecules is an innate property of water, the hydrophobic attraction (due to the hydrophobic effect) is unavoidably always present in aqueous media and has a value of ,Ghydrophobic,=,,102,mJ/m2, at 20,°C, being equal to the AB free energy of cohesion between the water molecules at that temperature. The strong underlying hydrophobic attraction due to this effect can, however, be surmounted by very hydrophilic molecules and particles that attract water molecules more strongly than the free energy of attraction of these molecules or particles for one another, plus the hydrogen-bonding free energy of cohesion between the water molecules, thus resulting in a net non-electrical double layer repulsion. Each of the three non-covalent forces, LW, AB or EL, any of which can be independently attractive or repulsive, decays, dependent on the circumstances, as a function of distance according to different rules. These rules, following an extended DLVO (XDLVO) approach, are given, as well as the measurement methods for the LW, AB and EL surface thermodynamic properties, determined at ,contact'. The implications of the resulting hydrophobic attractive and hydrophilic repulsive free energies, as a function of distance, are discussed with respect to specific and aspecific interactions in biological systems. The discussion furnishes a description of the manner by which shorter-range specific attractions can surmount the usually much stronger long-range aspecific repulsion, and ends with examples of in vitro and in vivo effects of hydrophilization of biopolymers, particles or surfaces by linkage with polyethylene oxide (PEO; also called polyethylene glycol, PEG). Copyright © 2003 John Wiley & Sons, Ltd. [source]