Point Conception (point + conception)

Distribution by Scientific Domains


Selected Abstracts


Chlorinated hydrocarbons in flatfishes from the Southern California, USA, Bight

ENVIRONMENTAL TOXICOLOGY & CHEMISTRY, Issue 6 2000
Kenneth Schiff
Abstract Alhough inputs of chlorinated hydrocarbon compounds to the Southern California Bight (SCB) are presently low, historical deposits represent a source of bioaccumulation potential to sediment-associated fauna. To assess this bioaccumulation potential, 14 chlorinated hydrocarbon classes were measured in livers of three species of flatfish collected from 63 randomly selected sites on the coastal shelf between Point Conception and the United States,Mexico international border. Tissue contamination was widespread throughout the SCB, but was limited to just two chlorinated hydrocarbon classes. Virtually 100% of Pacific sanddab (Citharichthys sordidus) and longfin sanddab (Citharichthys xanthostigma) populations were estimated to be contaminated with dichlorodiphenyltrichloroethane (total DDT = sum of o,p, and p,p, isomers of DDT + dichlorodiphenyldichloroethylene [DDE] + dichlorodiphenyldichloroethane [DDD]) and/or polychlorinated biphenyls (total PCBs). Total DDT also contaminated the majority (64%) of the Dover sole (Microstomus pacificus) population in the SCB. Total PCB measurements in tissues of SCB flatfish were dominated by 12 congeners (52, 66, 87, 101, 105, 118, 128, 138, 153, 170, 180, and 187), which averaged 95% of the combined mass of the 27 congeners analyzed. Sediment concentrations (normalized by total organic carbon content) accounted for most of the variability observed in tissue concentrations (normalized by lipid content) for 8 of these 12 congeners and total PCBs. Normalized sediment concentrations were also significantly correlated to normalized tissue concentrations for total DDT and p,p,-DDE. Tissue concentrations measured in this study from reference areas of the SCB were compared to tissue concentrations measured from reference areas in studies conducted in 1977 and 1985. Total DDT and total PCB liver concentrations were found to have decreased one to two orders of magnitude in Pacific and longfin sanddabs between 1985 and 1994. Total DDT and total PCB liver concentrations decreased 5- to 35-fold in Dover sole between 1977 and 1994. [source]


Analysis of plant species diversity with respect to island characteristics on the Channel Islands, California

JOURNAL OF BIOGEOGRAPHY, Issue 3 2000
Aaron Moody
Abstract Aim Species richness of native, endemic, and exotic plant groups is examined relative to island area, disturbance history, geological history, and other physical characteristics. Of particular interest are the biogeographic factors that underlie (a) differences in species-area and species-isolation relationships between plant groups; and (b) adherence or departure of individual islands and/or plant groups from expected patterns. Location The eight Channel Islands lie along the continental margin between the U.S./Mexico border and Point Conception, CA. They range in size from 2.6 to 249 km2, and are located from 20 to 100 km off the coast. The islands are known for their high degree of plant endemism, and they have undergone a long history of human occupation by indigenous peoples, followed by over a century of intensive grazing and other biotic disturbances. Methods The study is based on linear regression and residual analysis. Cases where individual islands and/or specific plant groups do not adhere to patterns expected under species-area and species-isolation paradigms, are evaluated with respect to other island characteristics that are not captured by considering only island size and isolation. Results All three plant groups exhibit strong, positive relationships between species richness and island size. For native species, the variance that remains after consideration of island size is largely explained by island isolation. For exotic species, residuals from the species-area relationship are unrelated to isolation. For endemic species, residuals from the species-area relationship are negatively related to isolation. Several islands are outliers for endemic and exotic species, for which richness values are not explained by either island area or isolation. Main,conclusions Species-area and species-isolation relationships for native, endemic, and exotic plant groups differ in accordance with hypothesized differences in the biogeographic factors that govern species diversity for these three groups. Most notably, endemic richness increases with isolation, suggesting the influence of this variable on processes of speciation and relictualism. These general relationships persist despite a long and varied history of human activity on the islands. Analysis of residuals suggests that deviations from expected patterns correspond to island-specific biogeographic factors. It is hypothesized that primary among these factors are land-use history, island environmental characteristics, and community-type richness. [source]


Pigment variability in larval Sebastes jordani off central California

JOURNAL OF FISH BIOLOGY, Issue 2 2005
K. M. Sakuma
Atypical pigment was observed in pre-flexion, flexion and post-flexion larval Sebastes collected off central California in 1991 and 1992 that otherwise resembled Sebastes jordani. Atypical pigment occurred on the axillary region at the base of the pectoral fin (most prominent on the inner edge of the pectoral fin base adjacent to the gut), on the median and distal regions of the pectoral fin and on the median and distal regions of the pelvic fin. In addition, lower and upper jaw pigment was observed at a much smaller size in these specimens than previously described in the literature. Identifications of these atypical specimens as S. jordani were confirmed using meristic and otolith characters as well as mitochondrial DNA sequence data. The ontogenetic variability of S. jordani is described. Specimens collected north of Point Conception were more pigmented than larval S. jordani described in the literature (collected predominately south of Point Conception), suggesting geographic variation in pigment development during the larval stage. [source]


Limits to gene flow in marine animals with planktonic larvae: models of Littorina species around Point Conception, California

BIOLOGICAL JOURNAL OF THE LINNEAN SOCIETY, Issue 2 2004
PAUL A. HOHENLOHE
Simulation models examined the process of gene flow in marine animals with planktonic larvae, and three factors that may influence it: ocean currents, planktonic period and spawning season. To focus on a realistic example, the models were based on measured ocean currents around Point Conception in southern California and the life histories of two intertidal gastropods, Littorina scutulata and L. plena. Results suggested that: (1) convergent ocean currents can create an effective barrier to gene flow that can be relaxed by temporal variation; (2) longer scales of temporal variation have a greater effect than shorter scales; (3) planktonic period has little effect above a minimum duration; and (4) an extended spawning season can eliminate gene flow barriers when currents vary seasonally. Failure of past studies to detect a phylogeographical boundary at Point Conception may be explained by extended spawning seasons and temporal variation at seasonal to millennial scales. These results fit a conceptual model of marine speciation in which short-lived, leaky barriers restrict gene flow, and divergence in a few genes may quickly produce reproductive isolation, resulting in cryptic sibling species. © 2004 The Linnean Society of London, Biological Journal of the Linnean Society, 2004, 82, 169,187. [source]