Potential Therapeutic Applications (potential + therapeutic_application)

Distribution by Scientific Domains


Selected Abstracts


Clinical application of neurotrophic factors: the potential for primary auditory neuron protection

EUROPEAN JOURNAL OF NEUROSCIENCE, Issue 9 2005
Lisa N. Gillespie
Abstract Sensorineural hearing loss, as a result of damage to or destruction of the sensory epithelia within the cochlea, is a common cause of deafness. The subsequent degeneration of the neural elements within the inner ear may impinge upon the efficacy of the cochlear implant. Experimental studies have demonstrated that neurotrophic factors can prevent this degeneration in animal models of deafness, and can even provide functional benefits. Neurotrophic factor therapy may therefore provide similar protective effects in humans, resulting in improved speech perception outcomes among cochlear implant patients. There are, however, numerous issues pertaining to delivery techniques and treatment regimes that need to be addressed prior to any clinical application. This review considers these issues in view of the potential therapeutic application of neurotrophic factors within the auditory system. [source]


Lipid-Like Nanoparticles for Small Interfering RNA Delivery to Endothelial Cells

ADVANCED FUNCTIONAL MATERIALS, Issue 19 2009
Seung-Woo Cho
Abstract Here, nanoparticles composed of lipid-like materials (lipidoids) to facilitate non-viral delivery of small interfering RNA (siRNA) to endothelial cells (ECs) are developed. Nanoparticles composed of siRNA and lipidoids with small size (,200,nm) and positive charge (,34,mV) are formed by self-assembly of lipidoids and siRNA. Ten lipidoids are synthesized and screened for their ability to facilitate the delivery of siRNA into ECs. Particles composed of leading lipidoids show significantly better delivery to ECs than a leading commercially available transfection reagent, Lipofectamine 2000. As a model of potential therapeutic application, nanoparticles composed of the top performing lipidoid, NA114, are studied for their ability to deliver siRNA targeting anti-angiogenic factor (SHP-1) to human ECs. Silencing of SHP-1 expression significantly enhances EC proliferation and decreases EC apoptosis under a simulated ischemic condition. [source]


Disrupting specific PDZ domain-mediated interactions for therapeutic benefit

BRITISH JOURNAL OF PHARMACOLOGY, Issue 2 2009
Miles D Houslay
The past two decades have seen an immense increase in our appreciation of the vast range of signalling processes and supporting machinery that occur in cells. Pivotal to this is the notion of signal compartmentalization (compartmentation). Targeting by protein domains is critical in allowing signalling complexes to be assembled at defined intracellular locales so as to confer correct function. This issue of the BJP contains two intriguing articles that address functional protein,protein interactions involving PDZ domains [Post-synaptic density protein-95 (PSD95), Drosophila disc large tumour suppressor (DlgA) and Zonula occludens-1 protein (zo-1)] and their implications for signalling. One involves targeting of neuronal nitric oxide synthase to the N-methyl D-aspartic acid (NMDA) receptor via the PDZ-containing signal scaffold, PSD95. The other involves controlling multiple receptor inputs into regulation of epithelial Na+K+ -ATPase through the PDZ-containing signal scaffold Pals-associated tight junction. Highlighted is not only the use of dominant-negative strategies to identify the importance of targeting at specific types of PDZ domains but also the exciting notion that small molecule disruptors of interaction at specific PDZ domains can be generated for potential therapeutic application. [source]


GLP-1: physiological effects and potential therapeutic applications

DIABETES OBESITY & METABOLISM, Issue 11 2008
Kasper Aaboe
Glucagon-like peptide 1 (GLP-1) is a gut-derived incretin hormone with the potential to change diabetes. The physiological effects of GLP-1 are multiple, and many seem to ameliorate the different conditions defining the diverse physiopathology seen in type 2 diabetes. In animal studies, GLP-1 stimulates ,-cell proliferation and neogenesis and inhibits ,-cell apoptosis. In humans, GLP-1 stimulates insulin secretion and inhibits glucagon and gastrointestinal secretions and motility. It enhances satiety and reduces food intake and has beneficial effects on cardiovascular function and endothelial dysfunction. Enhancing incretin action for therapeutic use includes GLP-1 receptor agonists resistant to degradation (incretin mimetics) and dipeptidyl peptidase (DPP)-4 inhibitors. In clinical trials with type 2 diabetic patients on various oral antidiabetic regimes, both treatment modalities efficaciously improve glycaemic control and ,-cell function. Whereas the incretin mimetics induce weight loss, the DPP-4 inhibitors are considered weight neutral. In type 1 diabetes, treatment with GLP-1 shows promising effects. However, several areas need clinical confirmation: the durability of the weight loss, the ability to preserve functional ,-cell mass and the applicability in other than type 2 diabetes. As such, long-term studies and studies with cardiovascular end-points are needed to confirm the true benefits of these new classes of antidiabetic drugs in the treatment of diabetes mellitus. [source]


Modulation of dendritic cell maturation and function with mono- and bifunctional small interfering RNAs targeting indoleamine 2,3-dioxygenase

IMMUNOLOGY, Issue 1pt2 2009
Gro F. Flatekval
Summary Antigen-presenting cells expressing indoleamine 2,3-dioxygenase (IDO) play a critical role in maintaining peripheral tolerance. Strategies to inhibit IDO gene expression and enhance antigen-presenting cell function might improve anti-tumour immunity. Here we have designed highly effective anti-IDO small interfering (si) RNAs that function at low concentrations. When delivered to human primary immune cells such as monocytes and dendritic cells (DCs), they totally inhibited IDO gene expression without impairing DC maturation and function. Depending on the design and chemical modifications, we show that it is possible to design either monofunctional siRNAs devoid of immunostimulation or bifunctional siRNAs with gene silencing and immunostimulatory activities. The latter are able to knockdown IDO expression and induce cytokine production through either endosomal Toll-like receptor 7/8 or cytoplasmic retinoid acid-inducible gene 1 helicase. Inhibition of IDO expression with both classes of siRNAs inhibited DC immunosuppressive function on T-cell proliferation. Immature monocyte-derived DCs that had been transfected with siRNA-bearing 5,-triphosphate activated T cells, indicating that, even in the absence of external stimuli such as tumour necrosis factor-,, those DCs were sufficiently mature to initiate T-cell activation. Collectively, our data highlight the potential therapeutic applications of this new generation of siRNAs in immunotherapy. [source]


Inhibition of west nile virus replication by retrovirus-delivered small interfering RNA in human neuroblastoma cells

JOURNAL OF MEDICAL VIROLOGY, Issue 5 2008
Yongbo Yang
Abstract West Nile virus (WNV) has been responsible for the largest outbreaks of arboviral encephalitis in U.S. history. No specific drug is currently available for the effective treatment of WNV infection. To exploit RNA interference as a potential therapeutic approach, a Moloney murine leukemia virus-based retrovirus vector was used to effectively deliver WNV-specific small interfering RNA (siRNA) into human neuroblastoma HTB-11 cells. Viral plaque assays demonstrated that transduced cells were significantly refractory to WNV replication, as compared to untransduced control cells (P,<,0.05), which correlated with the reduced expression of target viral genes and respective viral proteins. Therefore, retrovirus-mediated delivery of siRNA for gene silencing can be used to study the specific functions of viral genes associated with replication and may have potential therapeutic applications. J. Med. Virol. 80:930,936, 2008. © 2008 Wiley-Liss, Inc. [source]


Review article: RNA interference , potential therapeutic applications for the gastroenterologist

ALIMENTARY PHARMACOLOGY & THERAPEUTICS, Issue 9 2008
R. S. PELLISH
Summary Background, A new technique of gene regulation, termed RNA interference, has emerged recently. RNA interference utilizes short double-stranded RNA to inhibit selectively gene expression of complementary RNA nucleotide sequences after transcription, but prior to translation. Gastrointestinal and hepatic disorders may be particularly amenable to therapeutic RNA interference intervention because of the relative ease of delivery of drugs to the gastrointestinal tract and liver. Aim, To examine the published literature for potential clinical uses of RNA interference in gastroenterology and speculate on future therapies for luminal disease. Methods, Reports were identified using PubMed and the search term ,RNA interference', focusing on therapeutic uses related to gastrointestinal and liver disease. Results, Cellular and animal models demonstrate the potential application of short-interfering RNA-based therapies for viral hepatitis and inflammatory bowel disease. With validation of specific targets and better in vivo delivery of short-interfering RNA, RNA interference may represent a new frontier for molecular-targeted therapy in gastroenterology and hepatology. Conclusions, Short-interfering RNA provides a novel and specific means to inhibit gene expression. Translation to the clinical arena will require further definition of side-effects, off-target effects and delivery systems. Ultimately, mucosally applied or endoscopically delivered short-interfering RNA could be one of the earliest clinical uses of short-interfering RNA therapy. [source]


A Novel Possible Strategy Based on Self-Assembly Approach to Achieve Complete Periodontal Regeneration

ARTIFICIAL ORGANS, Issue 7 2010
Zhen-Hua Yang
Abstract Limitations of current regeneration modalities underscore the importance of restoring the three-dimensional (3D) microenvironment of periodontal development, which is able to elicit the intrinsic capacity of mesenchymal stem cells to proceed to engage in a redevelopment-like program. With increased attention for the potential therapeutic applications of periodontal ligament stem cells (PDLSCs) in periodontal regeneration, it has been proposed that bone marrow mesenchymal stem cells (BMMSCs) are very likely another cell source of physiological repair of periodontal tissues. With this in mind, enlightened from the research targeting the fabrication of laminar structures such as liver and kidney with heterotypic stratification of cell sheets, we proposed a novel possible strategy based on self-assembly approach, which is akin to the physiological phenomenon that occurs during organogenesis, to enhance complete reconstruction of functional complex periodontium-organ systems. We assumed that in this strategy, using the intrinsic capacity of monodispersed cells to self-assemble into a microtissue such as a 3D spheroid, bilayered cell pellet constructs comprising calcified bone-forming cell pellets (i.e., BMMSCs) and cementum/PDL-forming cell pellets (i.e., PDLSCs) would be fabricated in vitro in a tissue-mimicking way and then implanted into periodontal defects. We hypothesize that this novel strategy might open new options to reconstruct extended periodontal defects and then achieve the ultimate goal of predictable and complete regeneration of the periodontium. [source]


Promoting ,-secretase cleavage of beta-amyloid with engineered proteolytic antibody fragments

BIOTECHNOLOGY PROGRESS, Issue 4 2009
Srinath Kasturirangan
Abstract Deposition of beta-amyloid (A,) is considered as an important early event in the pathogenesis of Alzheimer's Disease (AD), and reduction of A, levels by various therapeutic approaches is actively being pursued. A potentially non-inflammatory approach to facilitate clearance and reduce toxicity is to hydrolyze A, at its ,-secretase site. We have previously identified a light chain fragment, mk18, with ,-secretase-like catalytic activity, producing the 1,16 and 17,40 amino acid fragments of A,40 as primary products, although hydrolysis is also observed following other lysine and arginine residues. To improve the specific activity of the recombinant antibody by affinity maturation, we constructed a single chain variable fragment (scFv) library containing a randomized CDR3 heavy chain region. A biotinylated covalently reactive analog mimicking ,-secretase site cleavage was synthesized, immobilized on streptavidin beads, and used to select yeast surface expressed scFvs with increased specificity for A,. After two rounds of selection against the analog, yeast cells were individually screened for proteolytic activity towards an internally quenched fluorogenic substrate that contains the ,-secretase site of A,. From 750 clones screened, the two clones with the highest increase in proteolytic activity compared to the parent mk18 were selected for further study. Kinetic analyses using purified soluble scFvs showed a 3- and 6-fold increase in catalytic activity (kcat/KM) toward the synthetic A, substrate compared to the original scFv primarily due to an expected decrease in KM rather than an increase in kcat. This affinity maturation strategy can be used to select for scFvs with increased catalytic specificity for A,. These proteolytic scFvs have potential therapeutic applications for AD by decreasing soluble A, levels in vivo. © 2009 American Institute of Chemical Engineers. Biotechnol. Prog., 2009 [source]


Human lactoferrin stimulates skin keratinocyte function and wound re-epithelialization

BRITISH JOURNAL OF DERMATOLOGY, Issue 1 2010
L. Tang
Summary Background, Human lactoferrin (hLF), a member of the transferrin family, is known for its antimicrobial and anti-inflammatory effects. Recent studies on various nonskin cell lines indicate that hLF may have a stimulatory effect on cell proliferation. Objectives, To study the potential role of hLF in wound re-epithelialization. Materials and methods, The effects of hLF on cell growth, migration, attachment and survival were assessed, with a rice-derived recombinant hLF (holo-rhLF), using proliferation analysis, scratch migration assay, calcein-AM/propidium iodide staining and terminal deoxynucleotidyl transferase-mediated dUTP nick-end labelling (TUNEL) method, respectively. The mechanisms of hLF on cell proliferation and migration were explored using specific pathway inhibitors. The involvement of lactoferrin receptor low-density lipoprotein receptor-related protein 1 (LRP1) was examined with RNA interference technique. An in vivo swine second-degree burn wound model was also used to assess wound re-epithelialization. Results, Studies revealed that holo-rhLF significantly stimulated keratinocyte proliferation which could be blocked by mitogen-activated protein kinase (MAPK) kinase 1 inhibitor. Holo-rhLF also showed strong promoting effects on keratinocyte migration, which could be blocked by either inhibition of the MAPK, Src and Rho/ROCK pathways, or downregulation of the LRP1 receptor. With cells under starving or 12- O -tetradecanoylphorbol-13-acetate exposure, the addition of holo-rhLF was found greatly to increase cell viability and inhibit cell apoptosis. Additionally, holo-rhLF significantly increased the rate of wound re-epithelialization in swine second-degree burn wounds. Conclusions, Our studies demonstrate the direct effects of holo-rhLF on wound re-epithelialization including the enhancement of keratinocyte proliferation and migration as well as the protection of cells from apoptosis. The data strongly indicate its potential therapeutic applications in wound healing. [source]


Uveal melanoma and macular degeneration: molecular biology and potential therapeutic applications

ACTA OPHTHALMOLOGICA, Issue 8 2008
Mario-Alexander Economou
Abstract. Uveal melanoma is the most common primary intraocular malignant tumor in adults with 30% to 50% of patients that ultimately succumb to metastatic disease, mainly to the liver. (Shields et al. 1991) Although new diagnostic and therapeutic tools have been developed during the most recent years, only the eye conservation rate has been achieved, while the survival rate remains poor. The reason for this liver-homing is largely unknown, but it is conceivable that hepatic environmental factors may be implicated in the growth, dissemination, and progression of this malignancy. The insulin-like growth factor (IGF-1) that binds to the IGF-1 receptor (IGF-1R) is mainly produced in the liver. It has been shown to be crucial for tumor transformation, maintenance of malignant phenotype, promotion of cell growth, and prevention of apoptosis. (Baserga 1995) The hepatocyte growth factor/scatter factor (HGF/SF) is another growth factor produced in the liver and exerts its biological effects through binding to the plasma membrane receptor c-Met. The activation of this receptor by HGF/SF ligand can induce proliferation, motility, adhesion, and invasion of tumor cells. (Cruz et al. 2003) Metastasis is a process involving many components, including tumor cell adhesion, migration, extracellular matrix (ECM) proteolysis, and invasion. The tumor cells undergo intravasation, disperse via the vascular and the lymphatic systems, and finally extravasate to invade the secondary sites. In all these steps, proteolytic enzyme systems are involved, including the matrix metalloproteinase (MMP) system and the plasminogen activation system. The migration of a malignant cell through the ECM and the basement membrane requires proteolytic activities. (Stetler-Stevenson et al. 1993). Efforts to target the IGF-I system has been made with different types of cancer but not with uveal melanoma. [source]