Home About us Contact | |||
Potential Involvement (potential + involvement)
Selected AbstractsActivity alters muscle reinnervation and terminal sprouting by reducing the number of schwann cell pathways that grow to link synaptic sitesDEVELOPMENTAL NEUROBIOLOGY, Issue 4 2003Flora M. Love Abstract In partially denervated rodent muscle, terminal Schwann cells (TSCs) located at denervated end plates grow processes, some of which contact neighboring innervated end plates. Those processes that contact neighboring synapses (termed "bridges") appear to initiate nerve terminal sprouting and to guide the growth of the sprouts so that they reach and reinnervate denervated end plates. Studies conducted prior to knowledge of this potential involvement of Schwann cells showed that direct muscle stimulation inhibits terminal sprouting following partial denervation (Brown and Holland, 1979). We have investigated the possibility this inhibition results from an alteration in the growth of TSC processes. We find that stimulation of partially denervated rat soleus muscle does not alter the length or number of TSC processes but does reduce the number of TSC bridges. Stimulation also reduces the number of TSC bridges that form between end plates during reinnervation of a completely denervated muscle. The nerve processes ("escaped fibers") that normally grow onto TSC processes during reinnervation are also reduced in length. Therefore, stimulation alters at least two responses to denervation in muscles: (1) the ability of TSC processes to form or maintain bridges with innervated synaptic sites, and (2) the growth of axons along processes extended by TSCs. © 2003 Wiley Periodicals, Inc. J Neurobiol 54: 566,576, 2003 [source] Exendin-4 protects pancreatic beta cells from human islet amyloid polypeptide-induced cell damage: potential involvement of AKT and mitochondria biogenesisDIABETES OBESITY & METABOLISM, Issue 9 2010R. Fan Aim: Glucagon-like peptide-1 (GLP-1) stimulates beta-cell proliferation and enhances beta-cell survival, whereas oligomerization of human islet amyloid polypeptide (hIAPP) may induce beta-cell apoptosis and reduce beta-cell mass. Type 2 diabetes is associated with increased expression of IAPP. As GLP-1-based therapy is currently developed as a novel antidiabetic therapy, we examined the potential protective action of the GLP-1 receptor agonist exendin-4 on hIAPP-induced beta-cell apoptosis. Methods: The study was performed in clonal insulinoma (INS-1E) cells. Both method of transcriptional and translational and sulphorhodamine B (SRB) assays were used to evaluate cell viability and cell mass. Western blot analysis was applied to detect protein expression. Transfection of constitutively active protein kinase B (PKB/AKT) was performed to examine the role of AKT. Mitochondrial biogenesis was quantified by mitogreen staining and RT-PCR. Results: First, we confirmed that hIAPP induced cell apoptosis and growth inhibition in INS-1E cells. These effects were partially protected by exendin-4 in association with partial recovery of the hIAPP-mediated AKT inhibition. Furthermore, AKT constitutive activation attenuated hIAPP-induced apoptosis, whereas PI3K/AKT inhibition abrogated exendin-4-mediated effects. These findings suggest that the antiapoptotic and proliferative effects of exendin-4 in hIAPP-treated INS-1E cells were partially mediated through AKT pathway. Moreover, hIAPP induced FOXO1 but inhibited pdx-1 nucleus translocation. These effects were restored by exendin-4. Finally, mitogreen staining and RT-PCR revealed enhanced mitochondrial biogenesis by exendin-4 treatment. Conclusions: Collectively, these results suggest that GLP-1 receptor agonist protects beta cells from hIAPP-induced cell death partially through the activation of AKT pathway and improved mitochondrial function. [source] Hepatic dysfunction and insulin insensitivity in type 2 diabetes mellitus: a critical target for insulin-sensitizing agentsDIABETES OBESITY & METABOLISM, Issue 9 2008P. D. Home The liver plays an essential role in maintaining glucose homeostasis, which includes insulin-mediated processes such as hepatic glucose output (HGO) and uptake, as well as in clearance of insulin itself. In type 2 diabetes, the onset of hyperglycaemia [itself a potent inhibitor of hepatic glucose output (HGO)], alongside hyperinsulinaemia, indicates the presence of hepatic insulin insensitivity. Increased HGO is central to the onset of hyperglycaemia and highlights the need to target hepatic insulin insensitivity as a central component of glucose-lowering therapy. The mechanisms underlying the development of hepatic insulin insensitivity are not well understood, but may be influenced by factors such as fatty acid oversupply and altered adipocytokine release from dysfunctional adipose tissue and increased liver fat content. Furthermore, although the impact of insulin insensitivity as a marker of cardiovascular disease is well known, the specific role of hepatic insulin insensitivity is less clear. The pharmacological tools available to improve insulin sensitivity include the biguanides (metformin) and thiazolidinediones (rosiglitazone and pioglitazone). Data from a number of sources indicate that thiazolidinediones, in particular, can improve multiple aspects of hepatic dysfunction, including reducing HGO, insulin insensitivity and liver fat content, as well as improving other markers of liver function and the levels of mediators with potential involvement in hepatic function, including fatty acids and adipocytokines. The current review addresses this topic from the perspective of the role of the liver in maintaining glucose homeostasis, its key involvement in the pathogenesis of type 2 diabetes and the tools currently available to reduce hepatic insulin insensitivity. [source] From kidney to cardiovascular diseases: NGAL as a biomarker beyond the confines of nephrologyEUROPEAN JOURNAL OF CLINICAL INVESTIGATION, Issue 3 2010D. Bolignano Eur J Clin Invest 2010; 40 (3): 273,276 Abstract Neutrophil gelatinase-associated lipocalin (NGAL), a small 25 kDa stress-protein released from injured tubular cells after various damaging stimuli, is already known by nephrologists as one of the most promising biomarkers of incoming Acute Kidney Injury. Moreover, recent studies seem to suggest a potential involvement of this factor also in the genesis and progression of chronic kidney diseases. This brief review explores the new interesting involvement of NGAL in the experimental and clinical field of cardiovascular diseases, such as the pathogenesis and clinical manifestations of atherosclerosis, acute myocardial infarction and heart failure. It does not seem difficult that, in the next future, NGAL may become a new missing link between the kidney and the cardiovascular system. [source] Experimental cerebral malaria progresses independently of the Nlrp3 inflammasomeEUROPEAN JOURNAL OF IMMUNOLOGY, Issue 3 2010Thornik Reimer Abstract Cerebral malaria is the most severe complication of Plasmodium falciparum infection in humans and the pathogenesis is still unclear. Using the P. berghei ANKA infection model of mice, we investigated a potential involvement of Nlrp3 and the inflammasome in the pathogenesis of cerebral malaria. Nlrp3 mRNA expression was upregulated in brain endothelial cells after exposure to P. berghei ANKA. Although ,-hematin, a synthetic compound of the parasites heme polymer hemozoin, induced the release of IL-1, in macrophages through Nlrp3, we did not obtain evidence for a role of IL-1, in vivo. Nlrp3 knock-out mice displayed a delayed onset of cerebral malaria; however, mice deficient in caspase-1, the adaptor protein ASC or the IL-1 receptor succumbed as WT mice. These results indicate that the role of Nlrp3 in experimental cerebral malaria is independent of the inflammasome and the IL-1 receptor pathway. [source] Cloning, characterization and localization of a novel basic peroxidase gene from Catharanthus roseusFEBS JOURNAL, Issue 5 2007Santosh Kumar Catharanthus roseus (L.) G. Don produces a number of biologically active terpenoid indole alkaloids via a complex terpenoid indole alkaloid biosynthetic pathway. The final dimerization step of this pathway, leading to the synthesis of a dimeric alkaloid, vinblastine, was demonstrated to be catalyzed by a basic peroxidase. However, reports of the gene encoding this enzyme are scarce for C. roseus. We report here for the first time the cloning, characterization and localization of a novel basic peroxidase, CrPrx, from C. roseus. A 394 bp partial peroxidase cDNA (CrInt1) was initially amplified from the internodal stem tissue, using degenerate oligonucleotide primers, and cloned. The full-length coding region of CrPrx cDNA was isolated by screening a leaf-specific cDNA library with CrInt1 as probe. The CrPrx nucleotide sequence encodes a deduced translation product of 330 amino acids with a 21 amino acid signal peptide, suggesting that CrPrx is secretory in nature. The molecular mass of this unprocessed and unmodified deduced protein is estimated to be 37.43 kDa, and the pI value is 8.68. CrPrx was found to belong to a ,three intron' category of gene that encodes a class III basic secretory peroxidase. CrPrx protein and mRNA were found to be present in specific organs and were regulated by different stress treatments. Using a ,-glucuronidase,green fluorescent protein fusion of CrPrx protein, we demonstrated that the fused protein is localized in leaf epidermal and guard cell walls of transiently transformed tobacco. We propose that CrPrx is involved in cell wall synthesis, and also that the gene is induced under methyl jasmonate treatment. Its potential involvement in the terpenoid indole alkaloid biosynthetic pathway is discussed. [source] Acute activation of Erk1/Erk2 and protein kinase B/akt proceed by independent pathways in multiple cell typesFEBS JOURNAL, Issue 17 2005Doris Chiu We used two inhibitors of the signaling enzyme phosphatidylinositol 3-kinase (PtdIns3K), wortmannin and LY294002, to evaluate the potential involvement of PtdIns3K in the activation of the MAP kinases (MAPK), Erk1 and Erk2. In dose,response studies carried out on six different cell lines and a primary cell culture, we analyzed the ability of the inhibitors to block phosphorylation of protein kinase B/akt (PKB/akt) at Ser473 as a measure of PtdIns3K activity, or the phosphorylation of Erk1/2 at activating Thr/Tyr sites as a measure of the extent of activation of MAPK/Erk kinase (MEK/Erk). In three different hemopoietic cell lines stimulated with cytokines, and in HEK293 cells, stimulated with serum, either wortmannin or LY294002, but never both, could partially block phosphorylation of Erks. The same observations were made in a B-cell line and in primary fibroblasts. In only one cell type, the A20 B cells, was there a closer correlation between the PtdIns3K inhibition by both inhibitors, and their corresponding effects on Erk phosphorylation. However, this stands out as an exception that gives clues to the mechanism by which cross-talk might occur. In all other cells, acute activation of the pathway leading to Erk phosphorylation could proceed independently of PtdIns3K activation. In a biological assay comparing these two pathways, the ability of LY294002 and the MEK inhibitor, U0126, to induce apoptosis were tested. Whereas LY294002 caused death of cytokine-dependent hemopoietic cells, U0126 had little effect, but both inhibitors together had a synergistic effect. The data show that these two pathways are regulating very different downstream events involved in cell survival. [source] Transcriptional profiling of Francisella tularensis infected peripheral blood mononuclear cells: a predictive tool for tularemiaFEMS IMMUNOLOGY & MEDICAL MICROBIOLOGY, Issue 1 2008Chrysanthi Paranavitana Abstract In this study, we analyzed temporal gene expression patterns in human peripheral blood mononuclear cells (PBMCs) infected with the Francisella tularensis live vaccine strain from 1 to 24 h utilizing a whole human Affymetrix® gene chip. We found that a considerable number of induced genes had similar expression patterns and functions as reported previously for gene expression profiling in patients with ulceroglandular tularemia. Among the six uniquely regulated genes reported for tularemia patients as being part of the alarm signal gene cluster, five, namely caspase 1, PSME2, TAP-1, GBP1, and GCH1, were induced in vitro. We also detected four out of the seven potential biomarkers reported in tularemia patients, namely TNFAIP6 at 4 h and STAT1, TNFSF10, and SECTM1 at 16 and 24 h. These observations underscore the value of using microarray expression profiling as an in vitro tool to identify potential biomarkers for human infection and disease. Our results indicate the potential involvement of several host pathways/processes in Francisella infection, notably those involved in calcium, zinc ion binding, PPAR signaling, and lipid metabolism, which further refines the current knowledge of F. tularensis infection and its effects on the human host. Ultimately, this study provides support for utilizing in vitro microarray gene expression profiling in human PBMCs to identify biomarkers of infection and predict in vivo immune responses to infectious agents. [source] Approaches to detecting gene × gene interaction in Genetic Analysis Workshop 14 pedigreesGENETIC EPIDEMIOLOGY, Issue S1 2005Brion S. Maher Abstract Whether driven by the general lack of success in finding single-gene contributions to complex disease, by increased knowledge about the potential involvement of specific biological interactions in complex disease, or by recent dramatic increases in computational power, a large number of approaches to detect locus × locus interactions were recently proposed and implemented. The six Genetic Analysis Workshop 14 (GAW14) papers summarized here each applied either existing or refined approaches with the goal of detecting gene × gene, or locus × locus, interactions in the GAW14 data. Five of six papers analyzed the simulated data; the other analyzed the Collaborative Study on the Genetics of Alcoholism data. The analytic strategies implemented for detecting interactions included multifactor dimensionality reduction, conditional linkage analysis, nonparametric linkage correlation, two-locus parametric linkage analysis, and a joint test of linkage and association. Overall, most of the groups found limited success in consistently detecting all of the simulated interactions due, in large part, to the nature of the generating model. Genet. Epidemiol. 29(Suppl. 1):S116,S119, 2005. © 2005 Wiley-Liss, Inc. [source] Differential erbB signaling in astrocytes from the cerebral cortex and the hypothalamus of the human brainGLIA, Issue 4 2009Ariane Sharif Abstract Studies in rodents have shown that astroglial erbB tyrosine kinase receptors are key regulatory elements in neuron,glia communication. Although both astrocytes and deregulation of erbB functions have been implicated in the pathogenesis of many common human brain disorders, erbB signaling in native human brain astrocytes has never been explored. Taking advantage of our ability to perform primary cultures from the cortex and the hypothalamus of human fetuses, we conducted a thorough analysis of erbB signaling in human astrocytes. We showed that human cortical astrocytes express erbB1, erbB2, and erbB3, whereas human hypothalamic astrocytes express erbB1, erbB2, and erbB4 receptors. Ligand-dependent activation of different erbB receptor heterodimeric complexes in these two populations of astrocytes translated into different morphological and proliferative responses. Although morphological plasticity was more pronounced in hypothalamic astrocytes than in cortical astrocytes, the former showed a lower mitogenic potential. Decreasing erbB4 expression via siRNA-mediated gene knockdown revealed that erbB4 constitutively restrains basal proliferative activity in hypothalamic astrocytes. We further show that treatment of human astrocytes with a protein kinase C activator results in rapid tyrosine phosphorylation of erbB receptors that involves cleavage of endogenous membrane bound erbB ligands by metalloproteinases. Together, these results indicate that erbB signaling in primary human brain astrocytes is functional, region-specific, and can be activated in a paracrine and/or autocrine manner. In addition, by revealing that some aspects of astroglial erbB signaling are different between human and rodents, our results provide a molecular framework to explore the potential involvement of astroglial erbB signaling deregulation in human brain disorders. © 2008 Wiley-Liss, Inc. [source] Inhibition of adiponectin production by homocysteine: A potential mechanism for alcoholic liver disease,HEPATOLOGY, Issue 3 2008Zhenyuan Song Although recent evidence suggests that down-regulation of production of the adipocyte hormone adiponectin has pathophysiological consequences for the development of alcoholic liver disease (ALD), the underlying mechanisms are elusive. Abnormal hepatic methionine-homocysteine metabolism induced by prolonged alcohol exposure has been reported both in clinical and experimental studies of ALD. Here, we conducted both in vivo and in vitro experiments to examine the effects of prolonged alcohol exposure on homocysteine levels in adipose tissue, its potential involvement in regulating adiponectin production, and the consequences for ALD. Chronic alcohol exposure decreased the circulating adiponectin concentration and adiponectin messenger RNA (mRNA) and protein levels in epididymal fat pads. Alcohol feeding induced modest hyperhomocysteinemia and increased homocysteine levels in the epididymal fat pad, which was associated with decreased mRNA levels of cystationine ,-synthase. Betaine supplementation (1.5%, wt/vol) in the alcohol-fed mice reduced homocysteine accumulation in adipose tissue and improved adiponectin levels. Moreover, exogenous homocysteine administration reduced gene expression, protein levels, and secretion of adiponectin in primary adipocytes. Furthermore, rats fed a high-methionine diet (2%, wt/wt) were hyperhomocysteinemic and had decreased adiponectin levels in both plasma and adipose tissue, which was associated with suppressed AMP-activated protein kinase activation in the liver. Mechanistic studies revealed that both inactivation of the extracellular signal regulated kinase 1/2 pathway and induction of endoplasmic reticulum stress response, specifically C/EBP homologous protein expression, may contribute to the inhibitory effect exerted by homocysteine. Conclusion: Chronic alcohol feeding caused abnormal accumulation of homocysteine in adipocytes, which contributes to decreased adiponectin production in ALD. (HEPATOLOGY 2008.) [source] Cloning and characterisation of a prenyltransferase from the aphid Myzus persicae with potential involvement in alarm pheromone biosynthesisINSECT MOLECULAR BIOLOGY, Issue 4 2008M. J. Lewis Abstract The majority of aphid species release an alarm pheromone with the most common component being the sesquiterpene (E)-,-farnesene, sometimes accompanied by other sesquiterpenes or monoterpenes. The genes/enzymes involved in the production of these compounds have not been identified in aphids although some components of isoprenoid biosynthesis have been identified in other insect species. Here we report the cloning, expression and characterisation of a prenyltransferase from the aphid Myzus persicae which can act as a farnesyl pyrophosphate synthase or a geranyl pyrophosphate synthase to produce both sesquiterpenes and monoterpenes and hence could be responsible for the biosynthesis of the observed components of the alarm pheromones. In addition, the enzyme can utilise geranyl pyrophosphate to produce farnesyl pyrophosphate showing that the synthesis of the latter involves the sequential condensation of isoprenyl pyrophosphate units. [source] ABCG2 overexpression in colon cancer cells resistant to SN38 and in irinotecan-treated metastasesINTERNATIONAL JOURNAL OF CANCER, Issue 6 2004Laurent Candeil Abstract Overcoming drug resistance has become an important issue in cancer chemotherapy. Among all known mechanisms that confer resistance, active efflux of chemotherapeutic agents by proteins from the ATP-binding cassette family has been extensively reported. The aim of the present study was to determine the involvement of ABCG2 in resistance to SN38 (the active metabolite of irinotecan) in colorectal cancer. By progressive exposure to increasing concentrations of SN38, we isolated 2 resistant clones from the human colon carcinoma cell line HCT116. These clones were 6- and 53-fold more resistant to SN38 than the HCT116-derived sensitive clone. Topoisomerase I expression was unchanged in our resistant variants. The highest resistance level correlated with an ABCG2 amplification. This overexpression was associated with a marked decrease in the intracellular accumulation of SN38. The inhibition of ABCG2 function by Ko143 demonstrated that enhanced drug efflux from resistant cells was mediated by the activity of ABCG2 protein and confirmed that ABCG2 is directly involved in acquired resistance to SN38. Furthermore, we show, for the first time in clinical samples, that the ABCG2 mRNA content in hepatic metastases is higher after an irinotecan-based chemotherapy than in irinotecan-naive metastases. In conclusion, this study supports the potential involvement of ABCG2 in the development of irinotecan resistance in vivo. © 2004 Wiley-Liss, Inc. [source] Does Low Vitamin D Status Contribute to "Age-Related" Morbidity?JOURNAL OF BONE AND MINERAL RESEARCH, Issue S2 2007Neil Binkley MD Abstract It is increasingly appreciated that vitamin D plays important physiological roles beyond the musculoskeletal system. As such, it is plausible that endemic vitamin D deficiency contributes to much nonskeletal morbidity that adversely affects quality of life with advancing age among older adults. This overview will explore the evidence for, and potential involvement of, vitamin D deficiency in nonbone conditions that are currently accepted as "age-related" morbidity among older adults. [source] Proteomic identification of nitrated brain proteins in early Alzheimer's disease inferior parietal lobuleJOURNAL OF CELLULAR AND MOLECULAR MEDICINE, Issue 8b 2009Tanea T. Reed Abstract Alzheimer's disease (AD) is a neurodegenerative disorder characterized by progressive decline in multiple cognitive domains. Its pathological hallmarks include senile plaques and neurofibrillary tangles. Mild cognitive impairment (MCI) is the earliest detectable stage of AD with limited symptomology and no dementia. The yearly conversion rate of patients from MCI to AD is 10,15%, although conversion back to normal is possible in a small percentage. Early diagnosis of AD is important in an attempt to intervene or slow the advancement of the disease. Early AD (EAD) is a stage following MCI and characterized by full-blown dementia; however, information involving EAD is limited. Oxidative stress is well-established in MCI and AD, including protein oxidation. Protein nitration also is an important oxidative modification observed in MCI and AD, and proteomic analysis from our laboratory identified nitrated proteins in both MCI and AD. Therefore, in the current study, a proteomics approach was used to identify nitrated brain proteins in the inferior parietal lobule from four subjects with EAD. Eight proteins were found to be significantly nitrated in EAD: peroxiredoxin 2, triose phosphate isomerase, glutamate dehydrogenase, neuropolypeptide h3, phosphoglycerate mutase1, H+, transporting ATPase, ,-enolase and fructose-1,6-bisphosphate aldolase. Many of these proteins are also nitrated in MCI and late-stage AD, making this study the first to our knowledge to link nitrated proteins in all stages of AD. These results are discussed in terms of potential involvement in the progression of this dementing disorder. [source] Molecular markers and determinants of prostate cancer metastasisJOURNAL OF CELLULAR PHYSIOLOGY, Issue 3 2001Rahul V. Gopalkrishnan Although intensely studied, the molecular and biochemical determinants of prostate cancer development and progression remain ill-defined. Moreover, current markers and methodologies cannot distinguish between a tumor that will remain indolent and not impinge on patient survival, versus a tumor with aggressive traits culminating in metastatic spread and death. Once prostate cancer is confirmed the most significant threat to a patient's survival and quality of life involves tumor metastasis. Radical surgery notwithstanding, prostate cancer accounts for 10% of all cancer-related deaths primarily arising through development of metastasis. Metastasis markers demonstrating an acceptable level of reliability are an obvious necessity if disproportionate and costly treatment is to be avoided and a reasonably accurate determination of clinical prognosis and measure of successful response to treatment is to be made. Therapeutic strategies that specifically inhibit metastatic spread are not presently possible and may not become available in the immediate future. This is because, while localized tumorigenesis has been relatively amenable to detection, analysis and treatment, metastasis remains a relatively undefined, complex and underexplored area of prostate cancer research. New findings in the field such subclasses of genes called metastasis suppressors and cancer progression suppressors, have opened up exciting avenues of investigation. We review current methodological approaches, model experimental systems and genes presently known or having potential involvement in human prostate cancer metastasis. © 2001 Wiley-Liss, Inc. [source] Mitochondrial alterations in Parkinson's disease: new cluesJOURNAL OF NEUROCHEMISTRY, Issue 2 2008Miquel Vila Abstract Mitochondrial dysfunction has long been associated with Parkinson's disease (PD). In particular, complex I impairment and subsequent oxidative stress have been widely demonstrated in experimental models of PD and in post-mortem PD samples. A recent wave of new studies is providing novel clues to the potential involvement of mitochondria in PD. In particular, (i) mitochondria-dependent programmed cell death pathways have been shown to be critical to PD-related dopaminergic neurodegeneration, (ii) many disease-causing proteins associated with familial forms of PD have been demonstrated to interact either directly or indirectly with mitochondria, (iii) aging-related mitochondrial changes, such as alterations in mitochondrial DNA, are increasingly being associated with PD, and (iv) anomalies in mitochondrial dynamics and intra-neuronal distribution are emerging as critical participants in the pathogenesis of PD. These new findings are revitalizing the field and reinforcing the potential role of mitochondria in the pathogenesis of PD. Whether a primary or secondary event, or part of a multi-factorial pathogenic process, mitochondrial dysfunction remains at the forefront of PD research and holds the promise as a potential molecular target for the development of new therapeutic strategies for this devastating, currently incurable, disease. [source] Implication of the proprotein convertase NARC-1/PCSK9 in the development of the nervous systemJOURNAL OF NEUROCHEMISTRY, Issue 3 2006Steve Poirier Abstract Neural apoptosis-regulated convertase-1/proprotein convertase subtilisin-kexin like-9 (NARC-1/PCSK9) is a proprotein convertase recently described to play a major role in cholesterol homeostasis through enhanced degradation of the low-density lipoprotein receptor (LDLR) and possibly in neural development. Herein, we investigated the potential involvement of this proteinase in the development of the CNS using mouse embryonal pluripotent P19 cells and the zebrafish as models. Time course quantitative RT,PCR analyses were performed following retinoic acid (RA)-induced neuroectodermal differentiation of P19 cells. Accordingly, the mRNA levels of NARC-1/PCSK9 peaked at day 2 of differentiation and fell off thereafter. In contrast, the expression of the proprotein convertases subtilisin kexin isozyme 1/site 1 protease and Furin was unaffected by RA, whereas that of PC5/6 and PC2 increased within and/or after the first 4 days of the differentiation period respectively. This pattern was not affected by the cholesterogenic transcription factor sterol regulatory element-binding protein-2, which normally up-regulates NARC-1/PCSK9 mRNA levels in liver. Furthermore, in P19 cells, RA treatment did not affect the protein level of the endogenous LDLR. This agrees with the unique expression pattern of NARC-1/PCSK9 in the rodent CNS, including the cerebellum, where the LDLR is not significantly expressed. Whole-mount in situ hybridization revealed that the pattern of expression of zebrafish NARC-1/PCSK9 is similar to that of mouse both in the CNS and periphery. Specific knockdown of zebrafish NARC-1/PCSK9 mRNA resulted in a general disorganization of cerebellar neurons and loss of hindbrain,midbrain boundaries, leading to embryonic death at ,,96 h after fertilization. These data support a novel role for NARC-1/PCSK9 in CNS development, distinct from that in cholesterogenic organs such as liver. [source] Role of mitogen-activated protein kinases in the mechanism of oxidant-induced cell swelling in cultured astrocytesJOURNAL OF NEUROSCIENCE RESEARCH, Issue 11 2010M. Moriyama Abstract Cytotoxic brain edema, usually a consequence of astrocyte swelling, is an important complication of stroke, traumatic brain injury, hepatic encephalopathy, and other neurological disorders. Although mechanisms underlying astrocyte swelling are not fully understood, oxidative stress (OS) has generally been considered an important factor in its pathogenesis. To better understand the mechanism(s) by which OS causes cell swelling, we examined the potential involvement of mitogen-activated protein kinases (MAPKs) in this process. Cultures exposed to theoxidant H2O2 (10, 25, 50 ,M) for different time periods (1,24 hr) significantly increased cell swelling in a triphasic manner. Swelling was initially observed at 10 min (peaking at 30 min), which was followed by cell shrinkage at 1 hr. A subsequent increase in cell volume occurred at approximately 6 hr, and the rise lasted for at least 24 hr. Cultures exposed to H2O2 caused the activation of MAPKs (ERK1/2, JNK and p38-MAPK), whereas inhibition of MAPKs diminished cell swelling induced by 10 and 25 ,M H2O2. These findings suggest that activation of MAPKs is an important factor in the mediation of astrocyte swelling following oxidative stress. © 2010 Wiley-Liss, Inc. [source] Hemostatic and hematological abnormalities in gain-of-function fps/fes transgenic mice are associated with the angiogenic phenotypeJOURNAL OF THROMBOSIS AND HAEMOSTASIS, Issue 11 2004W. Sangrar Summary. The Fps/Fes tyrosine kinase has been implicated in the regulation of hematopoiesis and inflammation. Mice expressing an activated variant of Fps/Fes (MFps) encoded by a gain-of-function mutant transgenic fps/fes allele (fpsMF) exhibited hematological phenotypes, which suggested that Fps/Fes can direct hematopoietic lineage output. These mice also displayed marked hypervascularity and multifocal-hemangiomas which implicated this kinase in the regulation of angiogenesis. Here we explored the potential involvement of Fps/Fes in the regulation of hemostasis through effects on blood cells and the vascular endothelium. Hematological parameters of fpsMF mice were characterized by peripheral blood analysis, histology, and transmission electron microscopy. Hemostasis parameters and platelet functions were assessed by flow cytometry and measurements of activated partial thromboplastin time, prothrombin time, thrombin clot time, platelet aggregation, bleeding times and in vitro fibrinolytic assays. Hematological and morphological analyses showed that fpsMF mice displayed mild thrombocytopenia, anemia, red cell abnormalities and numerous hemostatic defects, including hypofibrinogenemia, hyper-fibrinolysis, impaired whole blood aggregation and a mild bleeding diathesis. fpsMF mice displayed a complex array of hemostatic perturbations which are reminiscent of hemostatic disorders such as disseminated intravascular coagulation (DIC) and of hemangioma-associated pathologies such as Kasabach,Merritt phenomenon (KMS). These studies suggest that Fps/Fes influences both angiogenic and hemostatic function through regulatory effects on the endothelium. [source] A small outbreak of listeriosis potentially linked to the consumption of imitation crab meatLETTERS IN APPLIED MICROBIOLOGY, Issue 2 2000J.M. Farber A small outbreak of listeriosis involving two previously healthy adults occurred in Ontario. Food samples obtained from the refrigerator of the patients included imitation crab meat, canned black olives, macaroni and vegetable salad, spaghetti sauce with meatballs, mayonnaise and water. All of the samples except the water contained Listeria monocytogenes. The three most heavily contaminated samples were the imitation crab meat, the olives and the salad which contained 2·1 × 109, 1·1 × 107 and 1·3 × 106 cfu g,1, respectively. L. monocytogenes serotype 1/2b was isolated from the patients, as well as from the opened and unopened imitation crab meat. Molecular typing of the isolates by both randomly amplified polymorphic DNA (RAPD) and pulsed-field gel electrophoresis (PFGE) typing demonstrated the imitation crab meat and clinical strains to be indistinguishable. Challenge studies performed with a pool of L. monocytogenes strains showed that imitation crab meat, but not olives, supported growth of the organism. In this study we have shown for the first time the potential involvement of imitation crab meat in a small outbreak of listeriosis. In terms of disease prevention, temperature control is critical to prevent or reduce the growth of this foodborne pathogen. In addition, with refrigerated products having a long (> 30 d) shelf life, additional safety factors must be used to prevent the growth of foodborne pathogens such as L. monocytogenes. [source] Phosphate sensing in higher plantsPHYSIOLOGIA PLANTARUM, Issue 1 2002Steffen Abel Phosphate (Pi) plays a central role as reactant and effector molecule in plant cell metabolism. However, Pi is the least accessible macronutrient in many ecosystems and its low availability often limits plant growth. Plants have evolved an array of molecular and morphological adaptations to cope with Pi limitation, which include dramatic changes in gene expression and root development to facilitate Pi acquisition and recycling. Although physiological responses to Pi starvation have been increasingly studied and understood, the initial molecular events that monitor and transmit information on external and internal Pi status remain to be elucidated in plants. This review summarizes molecular and developmental Pi starvation responses of higher plants and the evidence for coordinated regulation of gene expression, followed by a discussion of the potential involvement of plant hormones in Pi sensing and of molecular genetic approaches to elucidate plant signalling of low Pi availability. Complementary genetic strategies in Arabidopsis thaliana have been developed that are expected to identify components of plant signal transduction pathways involved in Pi sensing. Innovative screening methods utilize reporter gene constructs, conditional growth on organophosphates and the inhibitory properties of the Pi analogue phosphite, which hold the promise for significant advances in our understanding of the complex mechanisms by which plants regulate Pi-starvation responses. [source] Developmental and adult expression of semaphorin 2a in the cricket Gryllus bimaculatus,THE JOURNAL OF COMPARATIVE NEUROLOGY, Issue 1 2007Kristen R. Maynard Abstract Developmental guidance cues act to direct growth cones to their correct targets in the nervous system. Recent experiments also demonstrate that developmental cues are expressed in the adult mammalian nervous system, although their function in the brain is not yet clear. The semaphorin gene family has been implicated in the growth of dendrites and axons in a number of different species. While the expression of semaphorin and its influence on tibial pioneer neurons in the developing limb bud have been well characterized in the grasshopper, the expression of semaphorin 2a (sema2a) has not been explored in the adult insect. In this study we used polymerase chain reaction (PCR) with degenerate and gene-specific primers to clone part of the secreted form of sema2a from Gryllus bimaculatus. Using in situ hybridization and immunohistochemistry, we confirmed that sema2a mRNA and protein expression patterns in the embryonic cricket were similar to that seen in the grasshopper. We also showed that tibial neuron development in crickets was comparable to that described in grasshopper. An examination of both developing and adult cricket brains showed that sema2a mRNA and protein were expressed in the Kenyon cells in mushroom bodies, an area involved in learning and memory. Sema2a expression was most obvious near the apex of the mushroom body in a region surrounding the neurogenic tip, which produces neurons throughout the life of the cricket. We discuss the role of neurogenesis in learning and memory and the potential involvement of semaphorin in this process. J. Comp. Neurol. 503:169,181, 2007. © 2007 Wiley-Liss, Inc. [source] Differential expression of p120 catenin in glial cells of the adult rat brainTHE JOURNAL OF COMPARATIVE NEUROLOGY, Issue 1 2004Norbert Chauvet Abstract p120 catenin (p120ctn) is involved in the regulation of cadherin-mediated adhesion and the dynamic organization of the actin cytoskeleton by modulating RhoGTPase activity. We have previously described the distribution of p120ctn during rat brain development and provided substantial evidence for the potential involvement of p120ctn in morphogenetic events and plasticity in the central nervous system. Here, we analyzed the cellular and ultrastructural distribution of p120ctn in glial cells of the adult rat forebrain. The highest intensity of immunostaining for p120ctn was found in cells of the choroid plexus and ependyma and was mainly restricted to the plasma membrane. However, p120ctn was almost absent from astrocytes. In contrast, in tanycytes, a particular glial cell exhibiting remarkable morphological plasticity, p120ctn, was localized at the plasma membrane and also in the cytoplasm. We show that a large subpopulation of oligodendrocytes expressed multiple isoforms, whereas other neural cells predominantly expressed isoform 1, and that p120ctn immunoreactivity was distributed through the cytoplasm and at certain portions of the plasma membrane. Finally, p120ctn was expressed by a small population of cortical NG2-expressing cells, whereas it was expressed by a large population of these cells in the white matter. However, in both regions, proliferating NG2-positive cells consistently expressed p120ctn. The expression of p120ctn by cells of the oligodendrocyte lineage suggests that p120ctn may participate in oligodendrogenesis and myelination. Moreover, the expression of p120ctn by various cell types and its differential subcellular distribution strongly suggest that p120ctn may serve multiple functions in the central nervous system. J. Comp. Neurol. 479:15,29, 2004. © 2004 Wiley-Liss, Inc. [source] Viral reactivation is not related to septic complications after major surgical resections,APMIS, Issue 4 2008T. VOGEL Anastomotic leakage and septic complications are the most important determinants of postoperative outcome after major surgical resections. Malignant diseases and surgical trauma can influence immune responses and the ability to react against infectious factors, such as bacteria and viruses. Comparable immune suppression can cause viral reactivation in transplantation and trauma patients. In this prospective study, patients who underwent major surgical resections for oesophageal or pancreatic cancer were investigated for the potential involvement of viral reactivation in the development of septic complications. 86 patients (40 oesophageal resections, 27 pancreatic resections, 19 surgical explorations) were included. Viral antigens, viral DNA, antibodies against viral structures (IgG, IgM, IgA) and, in part, viral cultivation were performed for CMV, EBV, HSV1, HSV2, HZV6 and VZV in serum, urine, sputum and swabs from buccal mucosa preoperatively and at postoperative days 1, 3 and 5. Test results were compared with the postoperative outcome (30-day morbidity, in-hospital mortality) and clinical scores (SOFA, TISS). For statistical analyses Student's t -tests and Chi2 -tests were used. The overall complication rate was 19.8% (30-day morbidity) with an in-hospital mortality of 1.2% (1/86 patients). Postoperatively, anti-CMV-IgG titres were significantly reduced (p<0.05) and remained suppressed in patients with septic complications. Anti-CMV-gB-IgG were also reduced, but showed considerable interindividual differences. Anti-CMV-IgA and -IgM did not show significant alterations in the postoperative course. In addition, direct viral detection methods did not support viral reactivation in patients in any of the investigated groups. The reduction of anti-CMV antibodies is likely caused by an immune suppression, specifically by reduced B-cell counts after major surgical interventions. Viral reactivation, however, did not occur in the early postoperative period as a specific risk for septic complications. [source] ERK-1/2 and p38 in the regulation of hypertrophic changes of normal articular cartilage chondrocytes induced by osteoarthritic subchondral osteoblastsARTHRITIS & RHEUMATISM, Issue 5 2010Indira Prasadam Objective Previous studies have shown the influence of subchondral bone osteoblasts (SBOs) on phenotypical changes of articular cartilage chondrocytes (ACCs) during the development of osteoarthritis (OA). The molecular mechanisms involved during this process remain elusive, in particular, the signal transduction pathways. The aim of this study was to investigate the in vitro effects of OA SBOs on the phenotypical changes in normal ACCs and to unveil the potential involvement of MAPK signaling pathways during this process. Methods Normal and arthritic cartilage and bone samples were collected for isolation of ACCs and SBOs. Direct and indirect coculture models were applied to study chondrocyte hypertrophy under the influence of OA SBOs. MAPKs in the regulation of the cell,cell interactions were monitored by phosphorylated antibodies and relevant inhibitors. Results OA SBOs led to increased hypertrophic gene expression and matrix calcification in ACCs by means of both direct and indirect cell,cell interactions. In this study, we demonstrated for the first time that OA SBOs suppressed p38 phosphorylation and induced ERK-1/2 signal phosphorylation in cocultured ACCs. The ERK-1/2 pathway inhibitor PD98059 significantly attenuated the hypertrophic changes induced by conditioned medium from OA SBOs, and the p38 inhibitor SB203580 resulted in the up-regulation of hypertrophic genes in ACCs. Conclusion The findings of this study suggest that the pathologic interaction of OA SBOs and ACCs is mediated via the activation of ERK-1/2 phosphorylation and deactivation of p38 phosphorylation, resulting in hypertrophic differentiation of ACCs. [source] Decreased lymphatic vessel counts in patients with systemic sclerosis: Association with fingertip ulcersARTHRITIS & RHEUMATISM, Issue 5 2010Alfiya Akhmetshina Objective Systemic sclerosis (SSc) is a connective tissue disease that is characterized by microvascular disease and tissue fibrosis. Progressive loss and irregular architecture of the small blood vessels are well characterized, but the potential involvement of the lymphatic vessel system has not been analyzed directly in SSc. This study was undertaken to assess whether the lymphatic vascular system is affected in SSc, and whether changes to the lymphatic vessels are associated with dystrophic changes and tissue damage in patients with SSc. Methods Lymphatic endothelial cells in skin biopsy samples from patients with SSc and age- and sex-matched healthy volunteers were identified by staining for podoplanin and prox-1, both of which are specifically expressed in lymphatic endothelial cells but not in blood vascular endothelial cells. CD31 was used as a pan,endothelial cell marker. Statistical analyses were performed using Kruskal-Wallis, Mann-Whitney U, and Spearman's rank correlation tests. Results The numbers of podoplanin- and prox-1,positive lymphatic vessels were significantly reduced in patients with SSc as compared with healthy individuals. The number of podoplanin-positive lymphatic precollector vessels was significantly lower in SSc patients with fingertip ulcers than in SSc patients without ulcers. Moreover, the number of lymphatic vessels correlated inversely with the number of fingertip ulcers at the time of biopsy and with the number of fingertip ulcers per year. The inverse correlation between lymphatic precollector vessel counts and fingertip ulcers remained significant after statistical adjustment for the blood vessel count, age, and modified Rodnan skin thickness score. Conclusion These results demonstrate a severe reduction in the number of lymphatic capillaries and lymphatic precollector vessels in patients with SSc. Patients with decreased lymphatic vessel counts may be at particularly high risk of developing fingertip ulcers. [source] Alterations of the synovial T cell repertoire in anti,citrullinated protein antibody,positive rheumatoid arthritis,ARTHRITIS & RHEUMATISM, Issue 7 2009Tineke Cantaert Objective The association of HLA,DRB1 alleles with anti,citrullinated protein antibodies (ACPAs) in rheumatoid arthritis (RA) suggests the potential involvement of T lymphocytes in ACPA-seropositive disease. The purpose of this study was to investigate this hypothesis by systematic histologic and molecular analyses of synovial T cells in ACPA+ versus ACPA, RA patients. Methods Synovial biopsy samples were obtained from 158 RA patients. Inflammation was determined histologically and immunohistochemically. RNA was extracted from peripheral blood mononuclear cells and synovial tissues obtained from 11 ACPA+ RA patients, 7 ACPA, RA patients, and 10 spondylarthritis (SpA) patients (arthritis controls). T lymphocyte clonality was studied by combined quantitative and qualitative T cell receptor CDR3 length distribution (LD) analysis and direct sequencing analysis. Results ACPA+ and ACPA, RA patients were similar at both the clinical and histologic levels. At the molecular level, however, patients with ACPA+ synovitis displayed a marked elevation of qualitative CDR3 LD alterations as compared with those with ACPA, synovitis and with the SpA controls. These differences in CDR3 LD were not observed in the peripheral blood, indicating a selective recruitment and/or local expansion of T cells in the synovial compartment. The CDR3 LD alterations reflected true monoclonal or oligoclonal expansions, as confirmed by direct sequencing of the T cell receptor. The CDR3 LD alterations in RA synovium did not correlate with B cell clonal expansions but were inversely associated with synovial lymphoid neogenesis. Conclusion The T cell repertoire is specifically restricted in RA patients with ACPA+ synovitis. Whereas the origin and role of these clonal alterations remain to be determined, our data suggest the preferential involvement of T lymphocytes in ACPA-seropositive RA. [source] Volumetric brain imaging findings in mood disordersBIPOLAR DISORDERS, Issue 2 2002John L Beyer Volumetric neuroimaging is increasingly being used by researchers of affective disorders to assess potential involvement of different brain structures in mood regulation and to test neuroanatomic models of mood disorders. In unipolar depression, findings suggest abnormalities in the frontal lobe (particularly the subgenual prefrontal cortex), basal ganglia (particularly the caudate and putamen), cerebellum, and hippocampus/amygdala complex. In bipolar disorder, abnormalities in the third ventricle, frontal lobe, cerebellum, and possibly the temporal lobe are noted. We review the findings for the various regions of the brain, and discuss the implications on the understanding of mood disorders. Directions for future research in volumetric imaging is then discussed. [source] Mutational screening of the CYP26A1 gene in patients with caudal regression syndrome,BIRTH DEFECTS RESEARCH, Issue 2 2006Patrizia De Marco Abstract BACKGROUND The retinoic acid (RA),catabolizing enzyme Cyp26a1 plays an important role in protecting tailbud tissues from inappropriate exposure to RA. Cyp26a1 -null animals exhibit caudal agenesis and spina bifida, imperforate anus, agenesis of the caudal portions of the digestive and urogenital tracts, and malformed lumbosacral skeletal elements. This phenotype closely resembles the most severe form of caudal agenesis in humans. In view of these findings, we investigated a potential involvement of the human CYP26A1 gene in the pathogenesis of caudal regression syndrome (CRS). METHODS Mutational screening of 49 CRS patients and 132 controls was performed using denaturing high-performance liquid chromatography and sequencing. Differences in the genotype and allele frequency of each SNP were evaluated by ,2 analysis. The biological significance of the intronic variants was investigated by transfection assays of mutant constructs and by analysis of the splicing patterns with RT-PCR. RESULTS Mutational screening allowed us to identify 6 SNPs, 4 of which (447C>G, 1134G>A, IVS1+10G>C, and IVS4+8AG>GA) are new. In addition, we describe a novel 2-site haplotype consisting of the 2 intronic SNPs. Both single-locus and haplotype analyses revealed no association with increased risk for CRS. The consequences of the 2 intronic polymorphisms on the mRNA splicing process were also investigated. Moreover, using functional and computational methods we demonstrated that both of these intronic polymorphisms affect the intron splicing efficiency. CONCLUSIONS Our research did not provide evidence that CYP26A1 has implications for the pathogenesis of human CRS. However, the relationship between CRS risk and the CYP26A1 genotype requires further study with a larger number of genotyped subjects. Birth Defects Research (Part A), 2006. © 2006 Wiley-Liss, Inc. [source] |