Plant Performance (plant + performance)

Distribution by Scientific Domains
Distribution within Life Sciences


Selected Abstracts


Flowering Frequency and Plant Performance and their Relation to Age in the Perennial Orchid Spiranthes spiralis (L.) Chevall.

PLANT BIOLOGY, Issue 3 2000
J. H. Willems
Abstract: Long-term demographic data have been analyzed to establish possible costs of flowering in the terrestrial orchid Spiranthes spiralis (L.) Chevall. in The Netherlands. Costs of flowering can be expressed as individual plant performance and flowering frequency in relation to the generative or vegetative status in the following year. Flowering in individuals of S. spiralis in a given year (t) is followed by a non-flowering phase in the next growing season (t + 1) in more than 80 % of the plants. The decline in flowering frequency is not a result of the age structure of the population involved because individual plants do not show signs of senescence after 10 - 15 years of aerial presence as an autotrophic plant. Rosettes have a smaller leaf area in the year of flowering (t), compared to the previous (t - 1) and following year (t + 1), due to the allocation of the limited underground resources to both flowering stalk and rosette at the beginning of its growing season. Generative reproduction in S. spiralis has a significant negative impact on both flowering frequency in subsequent years and on rosette size in the year of flowering. The flowering frequency and rosette size in relation to the life history, characterized by the yearly replacement of the underground tuber, is discussed. Better understanding of the life-history strategy, including costs of reproduction, may contribute to the creation of sustainable environmental conditions for growth of S. spiralis, e.g., optimal conditions for photosynthesis during the aboveground stage of the tiny wintergreen rosettes. [source]


The role of enemy release, tolerance and resistance in plant invasions: linking damage to performance

ECOLOGY LETTERS, Issue 8 2010
Young Jin Chun
Ecology Letters (2010) 13: 937,946 Abstract An explanation for successful invasion is that invasive alien species sustain less pressure from natural enemies than co-occurring native species. Using meta-analysis, we examined whether invasive species: (1) incur less damage, (2) exhibit better performance in the presence of enemies, and (3) tolerate damage more than native species. Invasive alien species did not incur less damage than native species overall. The performance of invasive alien species was reduced compared to natives in the presence of enemies, indicating the invasive alien species were less tolerant to damage than native species. However, there was no overall difference in performance of invasive alien and native species with enemies present. The damage and degree of reduction in performance of invasive alien relative to native species did not depend on relatedness to natives. Our results suggest aliens may not always experience enemy release, and enemy release may not always result in greater plant performance. [source]


Control of aphids on wheat by generalist predators: effects of predator density and the presence of alternative prey

ENTOMOLOGIA EXPERIMENTALIS ET APPLICATA, Issue 3 2009
Katja Oelbermann
Abstract There is evidence for both positive and negative effects of generalist predators on pest populations and the various reasons for these contrasting observations are under debate. We studied the influence of a generalist predator, Pardosa lugubris (Walckenaer) (Araneae: Lycosidae), on an aphid pest species, Rhopalosiphum padi (L.) (Hemiptera: Aphididae; low food quality for the spider), and its host plant wheat, Triticum spec. (Poaceae). We focused on the role of spider density and the availability of alternative prey, Drosophila melanogaster Meigen (Diptera: Drosophilidae; high food quality). The presence of spiders significantly affected plant performance and aphid biomass. Alternative prey and spider density strongly interacted in affecting aphids and plants. High spider density significantly improved plant performance but also at low spider density plants benefited from spiders especially in the presence of alternative prey. The results suggest that generalist arthropod predators may successfully reduce plant damage by herbivores. However, their ability to control prey populations varies with predator nutrition, the control of low-quality prey being enhanced if alternative higher-quality prey is available. [source]


Synergistic effect of insect herbivory and plant parasitism on the performance of the invasive tree Schinus terebinthifolius

ENTOMOLOGIA EXPERIMENTALIS ET APPLICATA, Issue 2 2009
Veronica Manrique
Abstract Schinus terebinthifolius Raddi (Anacardiaceae) is an introduced tree from South America that has invaded many ecosystems throughout central and south Florida, USA. Exploratory surveys in the plant's native range identified several potential biocontrol agents, including the leaflet rolling moth, Episimus unguiculus Clarke (Lepidoptera: Tortricidae). The larval stages of E. unguiculus tie together the plant leaflets while feeding and can completely defoliate small plants. The native love vine, Cassytha filiformis L. (Lauraceae), has been found parasitizing S. terebinthifolius in Florida. Natural processes such as plant parasitism may be one of the components of an integrated approach for S. terebinthifolius management in Florida. Thus, the objective of this study was to evaluate the combined effects of insect herbivory and plant parasitism on the performance of S. terebinthifolius. A factorial design experiment was conducted in the greenhouse to determine the effect of C. filiformis parasitism and E. unguiculus feeding damage on the growth and biomass of S. terebinthifolius. Results showed that plant parameters, including leaflet biomass, growth rate, and flower production, were negatively affected by plant parasitism and insect herbivory. Moreover, the decrease in S. terebinthifolius performance was greater when these two factors were combined, indicative of a synergistic relationship. In addition, the combined effect of C. filiformis and E. unguiculus suppressed plant performance for at least 2 months after the moths were removed. Therefore, increased control of S. terebinthifolius stands may be achieved in those areas where C. filiformis is present in Florida (e.g., pinelands, hammock forests) if the biocontrol agent E. unguiculus is approved for release. [source]


Impact of Collimonas bacteria on community composition of soil fungi

ENVIRONMENTAL MICROBIOLOGY, Issue 6 2009
Sachie Höppener-Ogawa
Summary The genus Collimonas consists of soil bacteria that have the potential to grow at the expense of living fungal hyphae. However, the consequences of this mycophagous ability for soil fungi are unknown. Here we report on the development of fungal communities after introduction of collimonads in a soil that had a low abundance of indigenous collimonads. Development of fungal communities was stimulated by addition of cellulose or by introducing plants (Plantago lanceolata). Community composition of total fungi in soil and rhizosphere and of arbuscular mycorrhizal fungi in roots was examined by PCR-DGGE. The introduction of collimonads altered the composition of all fungal communities studied but had no effects on fungal biomass increase, cellulose degrading activity or plant performance. The most likely explanation for these results is that differences in sensitivity of fungal species to the presence of collimonads result in competitive replacement of species. The lab and greenhouse experiments were complemented with a field experiment. Mesh bags containing sterile sand with or without collimonads were buried in an ex-arable field and a forest. The presence of collimonads had an effect on the composition of fungi invading these bags in the ex-arable site but not in the forest site. [source]


ON QUANTIFYING TOLERANCE OF HERBIVORY FOR COMPARATIVE ANALYSES

EVOLUTION, Issue 9 2008
Michael J. Wise
As the evolutionary importance of plant tolerance of herbivory is increasingly appreciated, more and more studies are not just measuring a plant's tolerance, but are comparing tolerance among plant genotypes, populations, species, and environments. Here, we suggest that caution must be taken in such comparative studies in the choice of measurement scales (and data transformations) for damage levels and plant performance. We demonstrate with a simple scenario of two plant groups of equal tolerance how the choice of scales can lead one to infer that the first group is more tolerant, the second group is more tolerant, or the two groups are equally tolerant,using the identical dataset. We conclude that to make reliable, logically consistent inferences when comparing tolerances among groups of plants, damage and performance should both be on an additive scale or both on a multiplicative scale. [source]


Species-level effects more important than functional group-level responses to elevated CO2: evidence from simulated turves

FUNCTIONAL ECOLOGY, Issue 3 2004
M. E. HANLEY
Summary 1Using mixtures of 14 calcareous grassland plant species drawn from three functional groups, we looked at the effects of elevated atmospheric CO2 on contrasting levels of ecosystem performance (species, functional group and community). Experimental communities were subjected to ambient (,350 µmol mol,1) or elevated CO2 (,600 µmol mol,1) in controlled environments, with grazing simulated by clipping at monthly intervals for 546 days. 2We assessed the effect of elevated CO2 on plant performance by quantifying the productivity (biomass) and cover of component species. We also examined the effect of elevated CO2 on the vertical structure of the plant canopy. Elevated CO2 resulted in a significant increase in total community biomass only following nutrient addition. Within functional groups, non-leguminous forb species had significantly greater biomass and cover in elevated CO2 both before and after nutrient addition, although the effect was mainly due to the influence of one species (Centaurea nigra). Grasses, in contrast, responded negatively to elevated CO2, although again significant reductions in biomass and cover could mainly be ascribed to a single species (Brachypodium pinnatum). Legumes exhibited increased biomass and cover in elevated CO2 (the effects being particularly marked for Anthyllis vulneraria and Lotus corniculatus), but this response disappeared following nutrient addition. Vertical structure was little affected by CO2 treatment. 3We conclude that due to the idiosyncratic responses of individual species, the categorization of plants into broad functional groups is of limited use in guiding our understanding of the impacts of elevated atmospheric CO2 on plant communities. [source]


Competitive relationships of Andropogon gerardii (Big Bluestem) from remnant and restored native populations and select cultivated varieties

FUNCTIONAL ECOLOGY, Issue 3 2004
D. J. GUSTAFSON
Summary 1Although genetic differentiation among plant populations is well known, its relevance for preserving the integrity of native ecosystems has received little attention. In a series of competition experiments with Andropogon gerardii Vitman, a dominant species of the North American Tallgrass Prairie, plant performance was related to seed provenance and restoration activities. 2Glasshouse experiments showed plant performance to be a function of seed source. Differential target plant performance relative to competitor identity was observed when plant performance was assessed across a range of competitor densities. Local and non-local plants were larger when competing against non-local plants relative to the local and cultivar plants, while cultivar plants were consistently larger than local and non-local plants regardless of competitor identity or density. The consistency of cultivar performance could reflect directional selection during cultivar development for consistently high fecundity, vigorous vegetative growth and resistance to pathogens. 3In a field experiment, non-local plants were half the size of local and cultivar plants, supporting recognition of seed provenances of A. gerardii based on differences in plant performance among source populations observed in the glasshouse study, and previous genetic analyses of the same populations. 4This study establishes that seed provenance and restoration activities influence the competitive ability of a dominant species which, in turn, may affect plant community structure and potential ecosystem function. [source]


Performance of High Arctic tundra plants improved during but deteriorated after exposure to a simulated extreme temperature event

GLOBAL CHANGE BIOLOGY, Issue 12 2005
Fleur L. Marchand
Abstract Arctic ecosystems are known to be extremely vulnerable to climate change. As the Intergovernmental Panel on Climate Change scenarios project extreme climate events to increase in frequency and severity, we exposed High Arctic tundra plots during 8 days in summer to a temperature rise of approximately 9°C, induced by infrared irradiation, followed by a recovery period. Increased plant growth rates during the heat wave, increased green cover at the end of the heat wave and higher chlorophyll concentrations of all four predominating species (Salix arctica Pall., Arctagrostis latifolia Griseb., Carex bigelowii Torr. ex Schwein and Polygonum viviparum L.) after the recovery period, indicated stimulation of vegetative growth. Improved plant performance during the heat wave was confirmed at plant level by higher leaf photochemical efficiency (Fv/Fm) and at ecosystem level by increased gross canopy photosynthesis. However, in the aftermath of the temperature extreme, the heated plants were more stressed than the unheated plants, probably because they acclimated to warmer conditions and experienced the return to (low) ambient as stressful. We also calculated the impact of the heat wave on the carbon balance of this tundra ecosystem. Below- and aboveground respiration were stimulated by the instantaneous warmer soil and canopy, respectively, outweighing the increased gross photosynthesis. As a result, during the heat wave, the heated plots were a smaller sink compared with their unheated counterparts, whereas afterwards the balance was not affected. If other High Arctic tundra ecosystems react similarly, more frequent extreme temperature events in a future climate may shift this biome towards a source. It is uncertain, however, whether these short-term effects will hold when C exchange rates acclimate to higher average temperatures. [source]


Detection of vegetation change using reconnaissance imagery

GLOBAL CHANGE BIOLOGY, Issue 3 2001
Herman H. Shugart
Summary Vegetation occurs at its highest elevations on equatorial mountains. Inspection of archival and recent high-resolution reconnaissance imagery of tropical mountains shows, in all cases, features indicating an increase in the elevation of mountain vegetation zones and an increase in vigour in the high-elevation vegetation. These changes are consistent with an increased plant performance from increased levels of carbon dioxide in the atmosphere as well as with a warmer or more favourable climate. [source]


Neotyphodium endophyte infection affects the performance of tall fescue in temperate region Andisols

GRASSLAND SCIENCE, Issue 1 2006
M. Hasinur Rahman
Abstract A pot experiment was conducted for 75 days to observe the effect of Neotyphodium coenophialum endophyte on three tall fescue (Festuca arundinacea Schreb.) ecotypes grown in two Andisols viz. Black Andisol and Red Andisol. Black Andisol with a naturally low content of P was high in other nutrients such as N, K, while Red Andisol, with a naturally high content of P, was low in other nutrients. Tiller number, plant height, chlorophyll content, shoot dry weight and agronomic efficiency of water use (WUEag) showed higher values in endophyte-infected (E+) plants than noninfected (E,) plants. Plants growing in Black Andisol performed better than those in Red Andisol. Among the three tall fescue ecotypes, one of them (ecotype Showa) had the best performance regardless of soils and endophyte infection. When considering the effect of endophyte infection in different soil conditions, higher WUEag was observed in endophyte-infected plants grown in Black Andisol. Endophyte infection significantly enhanced all plant parameters in Black Andisol but they were reduced in Red Andisol. Our results indicate that infected plants grew better in soil that was naturally low in P whereas uninfected plants had increased vegetative growth in soil that was naturally high in P. In nutrient poor soil with comparatively high P content (Red Andisol) the cost of endophyte infection may override its benefit. The presence of endophyte had a variable impact on plant performance and the effect of endophyte varied with ecotype of grass it infected into. [source]


Parametric analysis of a coal based combined cycle power plant

INTERNATIONAL JOURNAL OF ENERGY RESEARCH, Issue 1 2006
T. Srinivas
Abstract In the present paper thermodynamic analyses, i.e. both energy and exergy analyses have been conducted for a coal based combined cycle power plant, which consists of pressurized circulating fluidized bed (PCFB) partial gasification unit and an atmospheric circulating fluidized bed (ACFB) char combustion unit. Dual pressure steam cycle is considered for the bottoming cycle to reduce irreversibilities during heat transfer from gas to water/steam. The effect of operating variables such as pressure ratio, gas turbine inlet temperature on the performance of combined cycle power plant has been investigated. The pressure ratio and maximum temperature (gas turbine inlet temperature) are identified as the dominant parameters having impact on the combined cycle plant performance. The work output of the topping cycle is found to increase with pressure ratio, while for the bottoming cycle it decreases. However, for the same gas turbine inlet temperature the overall work output of the combined cycle plant increases up to a certain pressure ratio, and thereafter not much increase is observed. The entropy generation, the irreversibilities in each component of the combined cycle and the exergy destruction/losses are also estimated. Copyright © 2005 John Wiley & Sons, Ltd. [source]


Life cycle assessment of a PPV plant applied to an existing SUW management system

INTERNATIONAL JOURNAL OF ENERGY RESEARCH, Issue 5 2003
Francesco Di Maria
Abstract The huge amount of wastes produced by modern and developed countries involves important aspects of economical, social and technical fields and also of the environment. For this reason, different technologies have been proposed for trying to reduce the impact of waste management and disposal. Generally waste management system consists of different steps like selective collection, recycling and reuse operation, energy recovery from waste and landfilling. A new technology proposed for thermal waste treatment is the plasma pyrolysis vetrification (PPV). This system seems to have interesting perspective due to the possibility of thermal treatment of dangerous slag or waste producing inactivate vetrified substances that can be landfilled or used as building materials with no impact on the environment. In this study, the effect of the application of a PPV plant on an existing waste management system was evaluated with a life cycle assessment (LCA) analysis. All the activities connected to the existing system have been carefully analysed by collecting a large quantity of experimental data. Some assumptions have been made, in particular, on the PPV plant performance. LCA analysis results illustrate how the environmental benefits arising from the adoption of the new technology, concerns only few aspects of the whole system. Copyright © 2003 John Wiley & Sons, Ltd. [source]


Variation in Crown and Root Organic Reserves Among Lucerne Genotypes of Different Morphology and Flower Colour

JOURNAL OF AGRONOMY AND CROP SCIENCE, Issue 2 2003
F. Fornasier
Abstract Previous evidence indicates that differences in the concentration of underground organic reserves can drive the survival and growing ability of lucerne under cold and defoliation stresses. In order to provide the selection process with further information on compounds that may influence plant performance under grazing, we assessed variations in cold-season concentrations of nitrogen and carbon reserves on genotypes that had been identified for morphological features that possibly enhance grazing tolerance. The selected genotypes encompassed distinct morphological patterns (defined as ,models') and different taxa within the Medicago sativa complex, as shown by different flower colours. Crown concentrations of reserves were determined on 90 genotypes, whereas root concentrations were measured on a subsample of 15 genotypes. Wide intergenotypic variation was observed for all reserve substances. Comparisons among models and among flower colour classes highlighted the high concentrations of crown carbohydrates and root and crown-soluble proteins of the model coded as ,D1', characterized by prostrate, rhizomatous habit and long dormancy, which largely corresponded to plants with yellow or variegated flowers, typical of ssp. falcata and ×,varia, respectively. There was a strong ,flower colour × storage organ' interaction for sugar concentration, and the results suggested a preferential compartment of sugars in the roots of purple-flowered genotypes that belonged to the ssp. sativa. A rank correlation analysis indicated a positive relationship between persistence after two years under grazing of half-sib progenies deriving from 19 genotypes out of the 90 and crown concentrations of carbohydrates of the 19 mother plants. [source]


Responses of riparian plants to flooding in free-flowing and regulated boreal rivers: an experimental study

JOURNAL OF APPLIED ECOLOGY, Issue 6 2002
M. E. Johansson
Summary 1The long history of river regulation has resulted in extensively changed ecosystem structures and processes in rivers and their associated environments. This fact, together with changing climatic and hydrological conditions, has increased the need to recover the natural functions of rivers. To develop guidelines for river restoration, comparative ecological experiments at contrasting water-level regimes are needed. We compared growth and survival of transplanted individuals of four riparian plant species (Betula pubescens, Carex acuta, Filipendula ulmaria and Leontodon autumnalis) over 2 years on four free-flowing and four regulated riverbank sites in northern Sweden. The species were chosen as representatives of dominating life-forms and species traits on different elevations of the riverbanks. 2In Betula and Filipendula, mean proportional growth rates were significantly higher at free-flowing sites than at regulated sites, whereas no consistent differences between free-flowing and regulated sites were found in Carex and Leontodon. Differences among species were generally in accordance with natural distribution patterns along riverbank elevation gradients and with experimental evidence on flooding tolerance, although plants of all species survived and even showed positive growth rates on elevations below their natural range of occurrence. 3Partial least squares regression was used to relate plant performance (growth and survival) to duration, frequency and timing of flooding at the different sites. Flood duration and frequency typically reduced performance in all species and during all time periods, although to various degrees. Flood events early in the experiment determined the outcome to a high degree at all sites. Variables indicating a regulated regime were mostly negatively related to plant performance, whereas free-flowing regime variables were positively related to plant performance. 4We used two of the regression models generated from our data with an acceptably high predictive power to simulate a hypothetical re-regulation scenario in run-of-river impoundments. With an overall reduction in flooding duration and frequency of 50,75%, plant performance of Filipendula at low riverbank elevations showed predicted increases of about 20,30%, levelling off to zero at the highest elevations. Reductions in summer floods represented about one-third to half of this increase. 5We conclude that for a range of species individual plant performance is clearly reduced on banks of impoundments and storage reservoirs due to changes in the water-level regime. Furthermore, our model simulation suggests that rather substantial reductions of flood duration and frequency are needed to improve plant performance on riverbanks upstream from dams in impounded rivers. River restoration principles should, however, be based on a combination of experimental data on plant performance of individual species and observed long-term changes in plant communities of regulated rivers. Consequently, successful re-regulation schemes in boreal rivers should include both reductions of summer and winter floods as well as re-introduced spring floods. [source]


Influence of plant species and soil conditions on plant,soil feedback in mixed grassland communities

JOURNAL OF ECOLOGY, Issue 2 2010
Kathryn A. Harrison
Summary 1.,Our aim was to explore plant,soil feedback in mixed grassland communities and its significance for plant productivity and community composition relative to abiotic factors of soil type and fertility. 2.,We carried out a 4-year, field-based mesocosm experiment to determine the relative effects of soil type, historic management intensity and soil conditioning by a wide range of plant species of mesotrophic grassland on the productivity and evenness of subsequent mixed communities. 3.,The study consisted of an initial soil conditioning phase, whereby soil from two locations each with two levels of management intensity was conditioned with monocultures of nine grassland species, and a subsequent feedback phase, where mixed communities of the nine species were grown in conditioned soil to determine relative effects of experimental factors on the productivity and evenness of mixed communities and individual plant species performance. 4.,In the conditioning phase of the experiment, individual plant species differentially influenced soil microbial communities and nutrient availability. However, these biotic effects were much less important as drivers of soil microbial properties and nutrient availability than were abiotic factors of soil type and fertility. 5.,Significant feedback effects of conditioning were detected during the second phase of the study in terms of individual plant growth in mixed communities. These feedback effects were generally independent of soil type or fertility, and were consistently negative in nature. In most cases, individual plant species performed less well in mixed communities planted in soil that had previously supported their own species. 6.,Synthesis. These findings suggest that despite soil abiotic factors acting as major drivers of soil microbial communities and nutrient availability, biotic interactions in the form of negative feedback play a significant role in regulating individual plant performance in mixed grassland communities across a range of soil conditions. [source]


Habitat fragmentation and adaptation: a reciprocal replant,transplant experiment among 15 populations of Lychnis flos-cuculi

JOURNAL OF ECOLOGY, Issue 5 2008
Gillianne Bowman
Summary 1Habitat fragmentation and variation in habitat quality can both affect plant performance, but their effects have rarely been studied in combination. We thus examined plant performance in response to differences in habitat quality for a species subject to habitat fragmentation, the common but declining perennial herb Lychnis flos-cuculi. 2We reciprocally transplanted plants between 15 fen grasslands in north-east Switzerland and recorded plant performance for 4 years. 3Variation between the 15 target sites was the most important factor and affected all measures of plant performance in all years. This demonstrates the importance of plastic responses to habitat quality for plant performance. 4Plants from smaller populations produced fewer rosettes than plants from larger populations in the first year of the replant,transplant experiment. 5Plant performance decreased with increasing ecological difference between grassland of origin and target grassland, indicating adaptation to ecological conditions. In contrast, plant performance was not influenced by microsatellite distance and hardly by geographic distance between grassland of origin and target grassland. 6Plants originating from larger populations were better able to cope with larger ecological differences between transplantation site and site of origin. 7Synthesis: In addition to the direct effects of target grasslands, both habitat fragmentation, through reduced population size, and adaptation to habitats of different quality, contributed to the performance of L. flos-cuculi. This underlines that habitat fragmentation also affects species that are still common. Moreover, it suggests that restoration projects involving L. flos-cuculi should use plant material from large populations living in habitats similar to the restoration site. Finally, our results bring into question whether plants in small habitat remnants will be able to cope with future environmental change. [source]


Herbivore and neighbour effects on tundra plants depend on species identity, nutrient availability and local environmental conditions

JOURNAL OF ECOLOGY, Issue 1 2008
Anu Eskelinen
Summary 1I performed a factorial transplant experiment to test the roles of plant,plant interactions, herbivory by mammal grazers and resource availability for plant performance in two contrasting habitat types in a mountain tundra environment. 2Three perennial dicot herbs, Solidago virgaurea, Erigeron uniflorus and Saussurea alpina, were used as target plants to study the effects of neighbour removal and grazer exclusion, and nutrient enrichment and liming on plant growth, survival and reproductive success. These treatments were replicated in two contrasting habitat types, infertile acidic and fertile non-acidic tundra heaths. 3The effects of plant,plant interactions on Saussurea varied from facilitation in infertile acidic habitats to competition in fertile non-acidic habitats and in nutrient-enriched conditions, while the overall performance of Saussurea was strongly negatively influenced by the presence of grazers, the effects being greater when plants were fertilized and in fertile non-acidic heaths. Erigeron performed better under nutrient-enriched conditions than in unfertilized plots, when neighbours had been removed. Solidago was negatively affected by grazing and this impact was greater in nutrient-enriched plots and in non-acidic heaths than in acidic heaths and for unfertilized controls. There were no interactions between neighbour removal and herbivory in any of the three species, indicating that these processes operated independently. 4Grazer-preferred tall plants are strongly limited by consumption by mammal herbivores in nutrient-enriched conditions and in inherently fertile habitats. By contrast, arctic,alpine specialists and species of low stature experience increased competition with neighbouring vegetation in fertile habitats and in enriched nutrient conditions. 5Synthesis. Overall, the results suggest that the strength and directions of plant,plant and plant,herbivore interactions depend on plant species identity and are modified by soil edaphic factors to govern vegetation processes in tundra plant communities. These findings have important implications for understanding the forces structuring vegetation in barren tundra ecosystems under a changing environment. [source]


Genetic identity of interspecific neighbours mediates plant responses to competition and environmental variation in a species-rich grassland

JOURNAL OF ECOLOGY, Issue 5 2007
JASON D. FRIDLEY
Summary 1Although outbreeding populations of many grassland plants exhibit substantial genetic and phenotypic variation at fine spatial scales (< 100 m2), the implications of local genetic diversity for community structure are poorly understood. Genetic diversity could contribute to local species diversity by mediating the effects of competition between species and by enhancing species persistence in the face of environmental variation. 2We assayed the performance of three genotypes each of a dominant tussock grass (Koeleria macrantha [Ledeb.] J.A. Schultes) and dominant sedge (Carex caryophyllea Lat.) derived from a single 10 × 10 m quadrat within a limestone grassland in Derbyshire, UK. Genotypes were grown in monoculture and grass,sedge mixtures of different genetic composition in two environments of contrasting fertility. Species mixtures also included one genotype of the subordinate forb Campanula rotundifolia L. 3When grown without neighbours, intraspecific genotypes responded similarly to environmental treatments. One genotype of the sedge performed worse in both environments than the other two sedge genotypes. 4When grown in species mixtures, genotype performance was significantly influenced by the genetic identity of the neighbouring species for both the sedge and the grass. At high fertility, differential genotype performance was not sufficient to alter the expectation of competitive exclusion of the sedge by the grass. However, at low fertility, the competitive dominant depended on the genetic identity of both the grass and the sedge. In addition, each genotype of the grass performed best next to a different genotype of the sedge, and the identity of the best genotype pairings switched with environment. 5Performance of a single genotype of the subordinate Campanula was not predictable by fertility alone, but by how fertility interacted with different neighbouring genotypes of both the grass and the sedge. 6Results support the hypothesis that the genetic identity of interspecific neighbours influences plant performance in multispecies assemblages and mediates species' responses to environmental variation. Such interactions could be a key factor in the contribution of local intraspecific genetic diversity to species diversity. [source]


Plant species and functional group effects on abiotic and microbial soil properties and plant,soil feedback responses in two grasslands

JOURNAL OF ECOLOGY, Issue 5 2006
T. MARTIJN BEZEMER
Summary 1Plant species differ in their capacity to influence soil organic matter, soil nutrient availability and the composition of soil microbial communities. Their influences on soil properties result in net positive or negative feedback effects, which influence plant performance and plant community composition. 2For two grassland systems, one on a sandy soil in the Netherlands and one on a chalk soil in the United Kingdom, we investigated how individual plant species grown in monocultures changed abiotic and biotic soil conditions. Then, we determined feedback effects of these soils to plants of the same or different species. Feedback effects were analysed at the level of plant species and plant taxonomic groups (grasses vs. forbs). 3In the sandy soils, plant species differed in their effects on soil chemical properties, in particular potassium levels, but PLFA (phospholipid fatty acid) signatures of the soil microbial community did not differ between plant species. The effects of soil chemical properties were even greater when grasses and forbs were compared, especially because potassium levels were lower in grass monocultures. 4In the chalk soil, there were no effects of plant species on soil chemical properties, but PLFA profiles differed significantly between soils from different monocultures. PLFA profiles differed between species, rather than between grasses and forbs. 5In the feedback experiment, all plant species in sandy soils grew less vigorously in soils conditioned by grasses than in soils conditioned by forbs. These effects correlated significantly with soil chemical properties. None of the seven plant species showed significant differences between performance in soil conditioned by the same vs. other plant species. 6In the chalk soil, Sanguisorba minor and in particular Briza media performed best in soil collected from conspecifics, while Bromus erectus performed best in soil from heterospecifics. There was no distinctive pattern between soils collected from forb and grass monocultures, and plant performance could not be related to soil chemical properties or PLFA signatures. 7Our study shows that mechanisms of plant,soil feedback can depend on plant species, plant taxonomic (or functional) groups and site-specific differences in abiotic and biotic soil properties. Understanding how plant species can influence their rhizosphere, and how other plant species respond to these changes, will greatly enhance our understanding of the functioning and stability of ecosystems. [source]


The potential role of plant oxygen and sulphide dynamics in die-off events of the tropical seagrass, Thalassia testudinum

JOURNAL OF ECOLOGY, Issue 1 2005
J. BORUM
Summary 1Oxygen and sulphide dynamics were examined, using microelectrode techniques, in meristems and rhizomes of the seagrass Thalassia testudinum at three different sites in Florida Bay, and in the laboratory, to evaluate the potential role of internal oxygen variability and sulphide invasion in episodes of sudden die-off. The sites differed with respect to shoot density and sediment composition, with an active die-off occurring at only one of the sites. 2Meristematic oxygen content followed similar diel patterns at all sites with high oxygen content during the day and hyposaturation relative to the water column during the night. Minimum meristematic oxygen content was recorded around sunrise and varied among sites, with values close to zero at the die-off site. 3Gaseous sulphide was detected within the sediment at all sites but at different concentrations among sites and within the die-off site. Spontaneous invasion of sulphide into Thalassia rhizomes was recorded at low internal oxygen partial pressure during darkness at the die-off site. 4A laboratory experiment showed that the internal oxygen dynamics depended on light availability, and hence plant photosynthesis, and on the oxygen content of the water column controlling passive oxygen diffusion from water column to leaves and below-ground tissues in the dark. 5Sulphide invasion only occurred at low internal oxygen content, and the rate of invasion was highly dependent on the oxygen supply to roots and rhizomes. Sulphide was slowly depleted from the tissues when high oxygen partial pressures were re-established through leaf photosynthesis. Coexistence of sulphide and oxygen in the tissues and the slow rate of sulphide depletion suggest that sulphide reoxidation is not biologically mediated within the tissues of Thalassia. 6Our results support the hypothesis that internal oxygen stress, caused by low water column oxygen content or poor plant performance governed by other environmental factors, allows invasion of sulphide and that the internal plant oxygen and sulphide dynamics potentially are key factors in the episodes of sudden die-off in beds of Thalassia testudinum. Root anoxia followed by sulphide invasion may be a more general mechanism determining the growth and survival of other rooted plants in sulphate-rich aquatic environments. [source]


Effects of resource competition and herbivory on plant performance along a natural productivity gradient

JOURNAL OF ECOLOGY, Issue 2 2000
René Van Der Wal
Summary 1,The effects of resource competition and herbivory on a target species, Triglochin maritima, were studied along a productivity gradient of vegetation biomass in a temperate salt marsh. 2,Transplants were used to measure the impact of grazing, competition and soil fertility over two growing seasons. Three parts of the marsh were selected to represent different successional stages; Triglochin reached local dominance at intermediate biomass of salt-marsh vegetation. At each stage, three competition treatments (full plant competition, root competition only, and no competition) and three grazing treatments (full grazing, no grazing on Triglochin, and no grazing on Triglochin or neighbours) were applied to both seedlings and mature plants. 3,Competition and herbivory reduced biomass and flowering of Triglochin. The impact of grazing was strongest at the stage with the lowest biomass, while both herbivory and competition had a significant impact at the stage with the highest biomass. When plants were protected from direct herbivory, competition operated at all three successional stages. 4,Grazing reduced light competition when vegetation biomass was low or intermediate, but at high biomass there was competition for light even when grazing occurred. Herbivore exclusion increased the effects of plant competition. Except at low biomass, the negative impact of plant competition on Triglochin performance was greater than the positive effect of not being grazed. 5,Grazing played a minor role in seedling survival and establishment which were largely controlled by competitive and facilitative effects. 6,Once established, the persistence of Triglochin will be determined largely by grazing. Intense grazing in the younger marsh and increasing competition for light in the older marsh will restrict the distribution to sites with intermediate biomass. [source]


Environment and pollinator-mediated selection on parapatric floral races of Mimulus aurantiacus

JOURNAL OF EVOLUTIONARY BIOLOGY, Issue 1 2007
M. A. STREISFELD
Abstract We tested whether selection by pollinators could explain the parapatric distribution of coastal red- and inland yellow-flowered races of Mimulus aurantiacus (Phrymaceae) by examining visitation to natural and experimental populations. As a first step in evaluating whether indirect selection might explain floral divergence, we also tested for local adaptation in early life stages using a reciprocal transplant experiment. Hummingbirds visited flowers of each race at similar rates in natural populations but showed strong (>95%) preference for red flowers in all habitats in experimental arrays. Hawkmoths demonstrated nearly exclusive (>99% of visits) preference for yellow flowers and only visited in inland regions. Strong preferences for alternative floral forms support a direct role for pollinators in floral divergence. Despite these preferences, measures of plant performance across environments showed that red-flowered plants consistently survived better, grew larger and received more overall pollinator visits than yellow-flowered plants. Unmeasured components of fitness may favour the yellow race in inland habitats. Alternatively, we document a marked recent increase in inland hummingbird density that may have caused a change in the selective environment, favouring the eastward advance of red-flowered plants. [source]


Disentangling complex fine-scale ecological patterns by path modelling using GLMM and GIS

JOURNAL OF VEGETATION SCIENCE, Issue 5 2009
Vegar Bakkestuen
Abstract Question: How can statistical modelling tools (GLMM) and GIS be used as an aid in understanding complex ecological patterns? This general question was approached by using bryophyte demography data as an example. More specifically, we asked what is the contribution of terrain shape to explaining the performance and fate of plant individuals, controlling for all other known relationships? Location: Norway. Methods: Information on demography was obtained for 140 populations of the perennial clonal bryophyte Hylocomium splendens in Norway spruce forests during an 11-year period (1992-2002). Performance (size and branching pattern) was recorded for mature segments and fate was recorded for growing points. Positions of each of the more than 30 000 recorded bryophyte ramets were coupled with (micro-) topographic characteristics (slope and convexity) derived from fine-scale digital elevation models in a GIS framework. Carefully planned sequences of generalised linear mixed models (GLMM) were performed to test predictions from a conceptual path model. Results: We demonstrate strong dependence of size on branching, fate and on vertical position in the bryophyte carpet, and an effect of vertical position on branching pattern. Micro-topography contributed to explaining plant performance by four different mechanisms: (1) a direct effect of slope on the segment's vertical position in the carpet; (2-3) direct effects of both slope and convexity on fates of individuals via controls on risk of burial; and (4) an indirect effect of convexity on branching pattern via a direct effect on size. No indication of a direct effect of terrain on branching was found. Conclusions: Our study exemplifies the usefulness of GLMM for disentangling complex ecological relationships. Specifically, we recognise micro-topography as a potentially important factor for plant demography in general and for performance and fate of individuals in particular. [source]


Effects of regional climate and small-scale habitat quality on performance in the relict species Ramonda myconi

JOURNAL OF VEGETATION SCIENCE, Issue 2 2002
M. Riba
Bolòs et al. (1993) Abstract. The Mediterranean Basin harbours paleo-endemic species with a highly restricted and fragmented distribution. Many of them might also be of the remnant type, for which the regional dynamics depends on the persistence of extant populations. Therefore, a key issue for the long-term persistence of these species is to assess the variability and effects of ecological factors determining plant performance. We investigated the spatio-temporal variability in plant traits and ecological factors of Ramonda myconi, a preglacial relict species with remnant dynamics, in 5 populations over 4,7 yr. Ecological factors contributing to fecundity showed a high degree of between-year variability. Pre-dispersal fruit predation had a minor influence on total reproductive output, and most of the variability was found among individuals within populations and years. Spatio-temporal variability in growth and survival was rather low but significant, whereas recruitment showed important between-population variability. Among-year variability in fecundity and growth was related to climatic fluctuations on a regional scale, notably rainfall and temperature in a particular period, while the spatial variability in survival and recruitment was explained by within-population (patch) habitat quality. Although R. myconi is able to withstand repeated periods of drought, water availability seems to be the most important factor affecting plant performance in all the study populations. These findings suggest that the long-term persistence of species showing remnant population dynamics in habitats under the influence of Mediterranean climate might be threatened by increased aridity as a result of climate change. [source]


An illustrated gardener's guide to transgenic Arabidopsis field experiments

NEW PHYTOLOGIST, Issue 2 2008
Martin Frenkel
Summary ,,Field studies with transgenic Arabidopsis lines have been performed over 8 yr, to better understand the influence that certain genes have on plant performance. Many (if not most) plant phenotypes cannot be observed under the near constant, low-stress conditions in growth chambers, making field experiments necessary. However, there are challenges in performing such experiments: permission must be obtained and regulations obeyed, the profound influence of uncontrollable biotic and abiotic factors has to be considered, and experimental design has to be strictly controlled. ,,The aim here is to provide inspiration and guidelines for researchers who are not used to setting up such experiments, allowing others to learn from our mistakes. ,, This is believed to be the first example of a ,manual' for field experiments with transgenic Arabidopsis plants. Many of the challenges encountered are common for all field experiments, and many researchers from ecological backgrounds are skilled in such methods. ,,There is huge potential in combining the detailed mechanistic understanding of molecular biologists with ecologists' expertise in examining plant performance under field conditions, and it is suggested that more interdisciplinary collaborations will open up new scientific avenues to aid analyses of the roles of genetic and physiological variation in natural systems. [source]


Every plant for himself; the effect of a phenolic monoterpene on germination and biomass of Thymus pulegioides and T. serpyllum

NORDIC JOURNAL OF BOTANY, Issue 2 2009
Catrine Grønberg Jensen
Thyme plants are known for their production of aromatic oils, whose main component is terpenes. The plants leach terpenes to their surroundings and thereby affect the seed germination and biomass of associated plants, but also potentially themselves. A variation in the dominant terpenes produced by thyme plants is found both within and among species. In Denmark two thyme species (Thymus pulegioides and T. serpyllum) are naturally occurring. The essential oil of T. pulegioides in Denmark is mainly dominated by one monoterpene; ,carvacrol'. In contrast, the essential oil of T. serpyllum constitutes a mix of two,four different types of terpenes, both mono- and sesqui-terpenes. As the effects of terpenes on plant performance can vary with the type of terpene, and in order to study species-specific responses, we examined how the dominating T. pulegioides monoterpene ,carvacrol' affected germination and growth of both T. pulegioides and T. serpyllum. We compared the performance of seeds and seedlings of both thyme species on soil treated with carvacrol versus control soil. We found no effect of treatment on germination, but we detected a highly significant effect of treatment on seedling biomass. For both thyme species, seedling biomass was significantly higher on terpene soil compared to control soil, suggesting a general adaptation to the presence of terpenes in the soil for both thyme species. Moreover, while no difference in seedling biomass between species on control soil was found, T. pulegiodes seedlings were significantly larger than T. serpyllum when grown on soil treated with its ,home' terpene, suggesting an additional species specific response. Dividing the biomass into aboveground and root biomass showed that the increased biomass on terpene-soil was due to increased aboveground biomass, whereas no difference in root biomass was detected among treatments and species. We discuss whether this response may be caused by an adaptation to a predictable terpene-mediated alteration in nitrogen-availability. [source]


The spatial scale of adaptive population differentiation in a wide-spread, well-dispersed plant species

OIKOS, Issue 12 2008
Ute Becker
Adaptation to the specific conditions at different sites may contribute strongly to the wide distribution of a plant species. However, little is known about the scale at which such adaptation occurs in common species. We studied population differentiation, plasticity and local adaptation of the short-lived perennial Hypochoeris radicata, a widespread and common plant whose seeds are well-dispersed. We reciprocally transplanted seedlings among several populations of different size within and among three European regions (in the northwest Czech Republic, central Germany and the central Netherlands) and studied several fitness-related traits over two growing seasons. The region in which the reciprocal transplant experiment was carried out had no influence on the performance of seedlings, indicating that there were no differences in overall habitat quality. In contrast, the site within region, and the plot within site strongly influenced mean plant performance. Plants from different populations of origin differed in their performance, indicating genetic variation among populations, but performance strongly depended on the specific combination of population of origin and transplant site. Plants that grew at their home site produced on average almost twice the number of seeds per transplant (a multiplicative fitness measure) than foreign plants originating from other sites. Survival, rosette size and multiplicative fitness all decreased with increasing distance from the home site to the transplant site. The size of the population of origin did not influence overall plant performance or the strength of local adaptation. In conclusion, our results indicate that the common and widespread H. radicata consists of locally adapted genotypes within its European range at a relatively small scale. Thus a large potential for gene flow by seeds and a high density of populations do not appear to be sufficient to prevent population differentiation by selection. [source]


Architectural and growth traits differ in effects on performance of clonal plants: an analysis using a field-parameterized simulation model

OIKOS, Issue 5 2007
Radka Wildová
Individual traits are often assumed to be linked in a straightforward manner to plant performance and processes such as population growth, competition and community dynamics. However, because no trait functions in isolation in an organism, the effect of any one trait is likely to be at least somewhat contingent on other trait values. Thus, to the extent that the suite of trait values differs among species, the magnitude and even direction of correlation between values of any particular trait and performance is likely to differ among species. Working with a group of clonal plant species, we assessed the degree of this contingency and therefore the extent to which the assumption of simple and general linkages between traits and performance is valid. To do this, we parameterized a highly calibrated, spatially explicit, individual-based model of clonal plant population dynamics and then manipulated one trait at a time in the context of realistic values of other traits for each species. The model includes traits describing growth, resource allocation, response to competition, as well as architectural traits that determine spatial spread. The model was parameterized from a short-term (3 month) experiment and then validated with a separate, longer term (two year) experiment for six clonal wetland sedges, Carex lasiocarpa, Carex sterilis, Carex stricta, Cladium mariscoides, Scirpus acutus and Scirpus americanus. These plants all co-occur in fens in southeastern Michigan and represent a spectrum of clonal growth forms from strong clumpers to runners with long rhizomes. Varying growth, allocation and competition traits produced the largest and most uniform responses in population growth among species, while variation in architectural traits produced responses that were smaller and more variable among species. This is likely due to the fact that growth and competition traits directly affect mean ramet size and number of ramets, which are direct components of population biomass. In contrast, architectural and allocation traits determine spatial distribution of biomass; in the long run, this also affects population size, but its net effect is more likely to be mediated by other traits. Such differences in how traits affect plant performance are likely to have implications for interspecific interactions and community structure, as well as on the interpretation and usefulness of single trait optimality models. [source]


Interspecific and intraspecific interactions between salt marsh plants: integrating the effects of environmental factors and density on plant performance

OIKOS, Issue 2 2002
Jonathan M. Huckle
There has been much debate about the role of plant interactions in the structure and function of vegetation communities. Here the results of a pot experiment with controlled environments are described where three environmental variables (nutrients, sediment type and waterlogging) were manipulated factorially to identify their effects on the growth and intensity of interactions occurring between Spartina anglica and Puccinellia maritima. The two species were grown in split-plot planting treatments, representing intraspecific and interspecific addition series experiments, to determine individual and interactive effects of environmental factors and plant interactions on plant biomass. Above-ground growth of both species involved interactions between the environmental and planting treatments, while below-ground, environmental factors affected the biomass irrespective of planting treatments. It was suggested that this difference in growth response is evidence that in our experiment plant interactions between the two species occur primarily at the above-ground level. The intensity of plant interactions varied in a number of ways. First, interactions between Spartina and Puccinellia were distinctly asymmetrical, Puccinellia exerting a competitive effect on Spartina, with no reciprocal effect, and with a facilitative effect of Spartina on Puccinellia in low nutrient conditions. Second, the interactions varied in intensity in different environmental conditions. Interspecific competitive effects of Puccinellia on Spartina were more intense in conditions favourable to growth of Puccinellia and reduced or non-existent in environments with more abiotic stress. Third, intraspecific competition was found to be less intense for both species than interspecific interactions. Finally, the intensity of plant interactions involving both species was more intense above ground than below ground, with a disproportionate reduction in the intensity of interspecific competition below relative to above ground in treatments with less productive sediments and greater immersion. This is interpreted as reflecting a potential mechanism by which Spartina may be able to evade competitive neighbours. [source]