Plant Patches (plant + patch)

Distribution by Scientific Domains


Selected Abstracts


On the importance of patch attributes, environmental factors and past human impacts as determinants of perennial plant species richness and diversity in Mediterranean semiarid steppes

DIVERSITY AND DISTRIBUTIONS, Issue 1 2004
Fernando T. Maestre
ABSTRACT Richness and diversity of perennial plant species were evaluated in 17 Stipa tenacissima steppes along a degradation gradient in semiarid SE Spain. The main objective of the study was to evaluate the relative importance of historical human impacts, small-scale patch attributes and environmental factors as determinants of perennial plant species richness and diversity in S. tenacissima steppes, where vegetation is arranged as discrete plant patches inserted on a bare ground matrix. Partial least squares regression was used to determine the amount of variation in species richness and diversity that could be significantly explained by historical human impacts, patch attributes, and environmental factors together and separately. They explained up to 89% and 69% of the variation in species richness and diversity, respectively. In both cases, the predictive power of patch attributes models was higher than that of models consisting of abiotic characteristics and variables related to human impact, suggesting that patch attributes are the major determinants of species richness and diversity in semiarid S. tenacissima steppes. However, patch attributes alone are not enough to explain the observed variation in species richness and diversity. The area covered by late-successional sprouting shrubs and the distance between consecutive patches were the most influencing individual variables on species richness and diversity, respectively. The implications of these results for the management of S. tenacissima steppes are discussed. [source]


Effects of patch size and density on flower visitation and seed set of wild plants: a pan-European approach

JOURNAL OF ECOLOGY, Issue 1 2010
Jens Dauber
Summary 1.,Habitat fragmentation can affect pollinator and plant population structure in terms of species composition, abundance, area covered and density of flowering plants. This, in turn, may affect pollinator visitation frequency, pollen deposition, seed set and plant fitness. 2.,A reduction in the quantity of flower visits can be coupled with a reduction in the quality of pollination service and hence the plants' overall reproductive success and long-term survival. Understanding the relationship between plant population size and/or isolation and pollination limitation is of fundamental importance for plant conservation. 3.,We examined flower visitation and seed set of 10 different plant species from five European countries to investigate the general effects of plant populations size and density, both within (patch level) and between populations (population level), on seed set and pollination limitation. 4.,We found evidence that the effects of area and density of flowering plant assemblages were generally more pronounced at the patch level than at the population level. We also found that patch and population level together influenced flower visitation and seed set, and the latter increased with increasing patch area and density, but this effect was only apparent in small populations. 5.,Synthesis. By using an extensive pan-European data set on flower visitation and seed set we have identified a general pattern in the interplay between the attractiveness of flowering plant patches for pollinators and density dependence of flower visitation, and also a strong plant species-specific response to habitat fragmentation effects. This can guide efforts to conserve plant,pollinator interactions, ecosystem functioning and plant fitness in fragmented habitats. [source]


Sex-related spatial patterns of Poa ligularis in relation to shrub patch occurrence in northern Patagonia

JOURNAL OF VEGETATION SCIENCE, Issue 1 2000
Mónica B. Bertiller
Correa (1969,1988) Abstract. Poa ligularis is a dioecious species and a valuable forage plant which is widespread in the arid steppe of northern Patagonia (Argentina). The vegetation in these areas consists of a system of perennial plant patches alternating with bare soil areas defining contrasting micro-environments. We hypothesized that (1) male and female individuals of P. ligularis are spatially segregated in different micro-environments, (2) the intensity of spatial segregation of sexes depends on plant structure and (3) spatial segregation of sexes is enhanced by competitive interactions between the sexes within the vegetation patches. We analysed the spatial distribution of female and male individuals in relation to the spatial pattern of vegetation in two areas differing in their vegetation structure. The location of P. ligularis within patches where either male, female or both sexes occurred was also analysed. The results indicate that different patterns of spatial distribution of sexes of P. ligularis may be found at the community level depending on the dominant life forms and geometric structure of plant patches. Where patches are of a lower height, with a high internal patch cover, individuals of both sexes are concentrated within patch canopies. In sites characterized by large, tall patches and less internal patch cover suitable microsites for female and male P. ligularis occur both within and outside the patch with males located at further distances from the patch edge. Where the patch is large and tall enough to allow the establishment of males and females at relatively high numbers, males occupy the patch periphery or even colonize the interpatch bare soil. These spatial patterns are consistent with selective traits in which females better tolerate intraspecific competition than males, while males tolerate wider fluctuations in the physical environment (soil moisture, nitrogen availability, wind intensity, etc.). [source]


The influence of bite size on foraging at larger spatial and temporal scales by mammalian herbivores

OIKOS, Issue 12 2007
Lisa A. Shipley
Organisms respond to their heterogeneous environment in complex ways at many temporal and spatial scales. Here, I examine how the smallest scale process in foraging by mammalian herbivores, taking a bite, influences plants and herbivores over larger scales. First, because cropping bites competes with chewing them, bite size influences short-term intake rate of herbivores within plant patches. On the other hand, herbivores can chew bites while searching for new ones, thus influencing the time spent vigilant and intake rate as animals move among food patches. Therefore, bite size affects how much time herbivores must spend foraging each day. Because acquiring energy is necessary for fitness, herbivores recognize the importance of bite size and select bites, patches and diets based on tradeoffs between harvesting rates, digestion, and sheering forces. In turn, induced structural defenses of plants, such as thorns, allow plants to respond immediately to herbivory by reducing bite size and thus tissue loss. Over evolutionary time, herbivores have adapted mouth morphology that allows them to maximize bite size on their primary forage plant, whereas plants faced with large mammalian herbivores have adapted structures such as divarication that minimize bite size and protect themselves from herbivory. Finally, bite size available among plant communities can drive habitat segregation and migration of larger herbivores across landscapes. [source]


The role of pre- and post- alighting detection mechanisms in the responses to patch size by specialist herbivores

OIKOS, Issue 3 2005
Tibor Bukovinszky
Experimental data on the relationship between plant patch size and population density of herbivores within fields often deviates from predictions of the theory of island biogeography and the resource concentration hypothesis. Here we argue that basic features of foraging behaviour can explain different responses of specialist herbivores to habitat heterogeneity. In a combination of field and simulation studies, we applied basic knowledge on the foraging strategies of three specialist herbivores: the cabbage aphid (Brevicoryne brassicae), the cabbage butterfly (Pieris rapae L.) and the diamondback moth (Plutella xylostella L.), to explain differences in their responses to small scale fragmentation of their habitat. In our field study, populations of the three species responded to different sizes of host plant patches (9 plants and 100 plants) in different ways. Densities of winged cabbage aphids were independent of patch size. Egg-densities of the cabbage butterfly were higher in small than in large patches. Densities of diamondback moth adults were higher in large patches than in small patches. When patches in a background of barley were compared with those in grass, densities of the cabbage aphid and the diamondback moth were reduced, but not cabbage butterfly densities. To explore the role of foraging behaviour of herbivores on their response to patch size, a spatially explicit individual-based simulation framework was used. The sensory abilities of the insects to detect and respond to contact, olfactory or visual cues were varied. Species with a post-alighting host recognition behaviour (cabbage aphid) could only use contact cues from host plants encountered after landing. In contrast, species capable with a pre-alighting recognition behaviour, based on visual (cabbage butterfly) or olfactory (diamondback moth) cues, were able to recognise a preferred host plant whilst in flight. These three searching modalities were studied by varying the in flight detection abilities, the displacement speed and the arrestment response to host plants by individuals. Simulated patch size , density relationships were similar to those observed in the field. The importance of pre- and post- alighting detection in the responses of herbivores to spatial heterogeneity of the habitat is discussed. [source]