Planar Conformers (planar + conformer)

Distribution by Scientific Domains


Selected Abstracts


Conformational analysis, Part 41.

JOURNAL OF PHYSICAL ORGANIC CHEMISTRY, Issue 6 2006
-unsaturated carbonyl compounds, A modelling, LIS/NMR investigation of the conformations of
Abstract A novel Lanthanide Induced Shift Analysis (LISA) is presented. In this analysis both the paramagnetic and the diamagnetic lanthanide induced chemical shifts are normalised separately in contrast to previous techniques in which only the paramagnetic shifts were normalised. This procedure is used together with molecular mechanics (MMFF94) and ab initio (RHF/6-31G, RHF/6-311G** and B3LYP/6-311G**) calculations to investigate s - cis/s - trans isomerism in some ,,, -unsaturated aldehydes, ketones and esters. In tiglic aldehyde 1 and trans -cinnamaldehyde 4 the s - trans conformer predominates with energy differences ,E (s - cis,s - trans) of 1.64 and 1.76,kcal/mol. In methyl vinyl ketone 2 and trans -cinnamyl methyl ketone 5 the populations of the s - cis and s - trans isomers are almost equal (,E 0.24 and 0.0,kcal/mol) and in methyl crotonate 3 and methyl trans -cinnamate 6 the s - cis conformer is more stable (,E ,0.72 and ,0.41,kcal/mol). These results are in agreement with both the MMFF94 and ab initio calculated energies for the compounds except tiglic aldehyde 1 in which all the calculated values are too large and cinnamyl ketone 5. In this compound the ab initio calculations predict the s - cis form to be more stable than the s - trans in contrast to both the MM calculations and the observed result which give both forms of equal energy. Also in both the MM and ab initio calculations phenyl substitution in the ketone (2 vs. 5) considerably stabilises the s - cis form. This is not observed in practise. In phenyl acetate 7 the B3LYP calculations give two equally stable structures, one planar one non-planar. The MMFF94 and MP2 calculations and the LIS analysis support the existence of only the non -planar conformer in solution, which is also the conformation of phenyl acetate in the crystal. Copyright 2006 John Wiley & Sons, Ltd. [source]


Theoretical studies on thiabenzene and its fused derivatives: DFT and ab initio computations

HETEROATOM CHEMISTRY, Issue 5 2006
M. Z. Kassaee
The molecular structures of thiabenzene (1), 1-thianaphthalene (2), 2-thianaphthalene (3), and 9-thiaanthracene (4) are studied using HF and DFT methods with 6-31+G* basis set. The nonplanar boat conformers of 1,4, with 6,-electrons in their heterocyclic ring, appear more stable than the corresponding planar conformers with 8,-electrons in the ring. This study focuses on the stability, the ylide character, the inversion barrier energy of sulfur atoms, and the conformational flexibility of the ring in 1,4. 2006 Wiley Periodicals, Inc. Heteroatom Chem 17:376,381, 2006; Published online in Wiley InterScience (www.interscience.wiley.com). DOI 10.1002/hc.20214 [source]


Conformational Relaxation of p -Phenylenevinylene Trimers in Solution Studied by Picosecond Time-Resolved Fluorescence

CHEMPHYSCHEM, Issue 18 2007
Roberto E. Di Paolo Dr.
Abstract Two p -phenylenevinylene (PV) trimers, containing 3,-methylbutyloxyl (in MBOPV3) and 2,-ethylhexyloxyl (in EHOPV3) side chains, are used as model compounds of PV-based conjugated polymers (PPV) with the purpose of clarifying the origin of fast (picosecond time) components observed in the fluorescence decays of poly[2-methoxy-5-(2,-ethylhexyloxy)- p -phenylenevinylene] (MEH-PPV). The fluorescence decays of MBOPV3 and EHOPV3 reveal the presence of similar fast components, which are assigned to excited-state conformational relaxation of the initial population of non-planar trimer conformers to lower-energy, more planar conformers. The rate constant of conformational relaxation kCR is dependent on solvent viscosity and temperature, according to the empirical relationship kCR=a,o,,,exp(,,E,/RT), where a,o,, is the frequency factor, ,o is the pre-exponential coefficient of viscosity, E, is the activation energy of viscous flow. The empirical parameter ,, relating the solvent microscopic friction involved in the conformational change to the macroscopic solvent friction (,=1), depends on the side chain. The fast component in the fluorescence decays of MEH-PPV polymers (PPVs), is assigned to resonance energy transfer from short to longer polymer segments. The present results call for revising this assignment/interpretation to account for the occurrence of conformational relaxation, concurrently with energy transfer, in PPVs. [source]


Ab initio and density functional theory studies of the structure, gas-phase acidity and aromaticity of tetraselenosquaric acid

CHINESE JOURNAL OF CHEMISTRY, Issue 6 2000
Li-Xin Zhou
Abstract Results of ab initio self-consistent-field (SCF) and density functional theory (DFT) calculations of the gas-phase structure, acidity (free energy of deprotonation, ,G*) and aromaticity of tetraselenosquaric acid (3, 4-diselenyl-3-cyclobutene-1,2-diselenone, H2 C4 Se4)are reported. The global minimum found on the potential energy surface of tetraselenosquaric acid presents a planar conformation. The ZZ isomer was found to have the lowest energy among the three planar conformers and the ZZ and ZE isomers are very dose in energy. The optimized geometric parameters exhibit a bond length equalization relative to reference compounds, cyclobutanediselenone, and cyclobutanediselenol. The computed aromatic stabilization energy (ASE) by homodesmotic reaction is -77.4 (MP2(fu)/6,311+G** /RHF/6 - 311 + G** ) and - 54.8 kJ/mol (B3LYP/6 - 311 + G** //B3LYP/6 -311 + G**). The aromaticity of tetraselenosquaric acid is indicated by the calculated diamagnetic susceptibility exaltation (A) -19.13 (CSGT(IGAIM)-RHF/6,311 + G**// RHF/6,311 + G** and -32.91 (4,10,6 m,3/mol)(CSGT(I-GAIM)-B3LYP/6 - 311 + G* * //B3LYP/6 - 311 + G**). Thus, tetraselenosquaric acid fulfils the geometric, energetic and magnetic criteria of aromaticity. The calculated gas-phase acidity is ,G1*(298k) = 1257.7 and ,G*2 (298k) = 1617.1 kJ/mol. Hence, tetraselenosquaric acid is the strongest acid among the three squaric acids (3, 4-dihydroxy-3-cyclobutene-1, 2-dione, H2 C4 3,4-dithiohydroxy-3-cyclobutene-1,2-dithione, H2C4 S4, 3, 4-diselenyl-3-cyclobutene-1,2-diselenone, H2C4Se4). [source]