Placental Form (placental + form)

Distribution by Scientific Domains


Selected Abstracts


Leptin-mediated neovascularization is a prerequisite for progression of nonalcoholic steatohepatitis in rats,

HEPATOLOGY, Issue 4 2006
Mitsuteru Kitade
Nonalcoholic steatohepatitis (NASH) may cause fibrosis, cirrhosis, and hepatocellular carcinoma (HCC); however, the exact mechanism of disease progression is not fully understood. Angiogenesis has been shown to play an important role in the progression of chronic liver disease. The aim of this study was to elucidate the role of angiogenesis in the development of liver fibrosis and hepatocarcinogenesis in NASH. Zucker rats, which naturally develop leptin receptor mutations, and their lean littermate rats were fed a choline-deficient, amino acid,defined diet. Both Zucker and littermate rats showed marked steatohepatitis and elevation of oxidative stress markers (e.g., thiobarbital acid reactive substances and 8-hydroxydeoxyguanosine). In sharp contrast, liver fibrosis, glutathione- S -transferase placental form (GST-P)-positive preneoplastic lesions, and HCC developed in littermate rats but not in Zucker rats. Hepatic neovascularization and the expression of vascular endothelial growth factor (VEGF), a potent angiogenic factor, only increased in littermate rats, almost in parallel with fibrogenesis and carcinogenesis. The CD31-immunopositive neovessels were mainly localized either along the fibrotic septa or in the GST-P,positive lesions. Our in vitro study revealed that leptin exerted a proangiogenic activity in the presence of VEGF. In conclusion, these results suggest that leptin-mediated neovascularization coordinated with VEGF plays an important role in the development of liver fibrosis and hepatocarcinogenesis in NASH. (HEPATOLOGY 2006;44:983,991.) [source]


Intraperitoneal injection of d- galactosamine provides a potent cell proliferation stimulus for the detection of initiation activities of chemicals in rat liver

JOURNAL OF APPLIED TOXICOLOGY, Issue 6 2005
Yoshiji Asaoka
Abstract In an in vivo 5-week initiation assay model, chemical hepatectomy by hepatotoxicant administration was utilized as a cell proliferation stimulus as an alternative to the two-thirds partial hepatectomy. The study investigated the effect of an intraperitoneal (i.p.) injection of d- galactosamine (d -gal) for this purpose in a medium-term liver bioassay, with a further focus on cell proliferation kinetics and cytochrome P450 (CYP) expression. In experiment I, cell proliferation in rat liver after a single administration of d -gal (700 mg kg,1, i.p.) was analysed by the bromodeoxyuridine (BrdU) labeling method, and CYP isozymes were quantified by immunoblotting. In experiment II, the induction of glutathione S-transferase placental form (GST-P) positive foci by 1,2-dimethylhydrazine (DMH) was evaluated in a modified in vivo 5-week initiation assay model. At 84 hours after single administration of d -gal (i.p.) the BrdU index was markedly elevated (27.5% Ī 9.5%). Although CYP 2E1 and 1A2 apoprotein contents decreased transiently to less than 20% of the control level, subsequently they recovered to 60% and 40% of the control level, respectively, at 84 hours. Induction of GST-P positive foci in the group given DMH at 84 hours after a single administration of d -gal was significantly greater than in the control group, correlating with the kinetics of cell proliferation. In conclusion, the sensitivity of the present initiation assay using d -gal i.p. is high, so that d -gal i.p. can be considered an effective cell proliferation stimulus. Copyright © 2005 John Wiley & Sons, Ltd. [source]


Prevalidation of potential protein biomarkers in toxicology using iTRAQ‘ reagent technology

PROTEINS: STRUCTURE, FUNCTION AND BIOINFORMATICS, Issue 10 2007
Matthias GlŁckmann
Abstract Today, toxicoproteomics still relies mainly on 2-DE followed by MS for detection and identification of proteins, which might characterize a certain state of disease, indicate toxicity or even predict carcinogenicity. We utilized the classical 2-DE/MS approach for the evaluation of early protein biomarkers which are predictive for chemically induced hepatocarcinogenesis in rats. We were able to identify statistically significantly deregulated proteins in N -nitrosomorpholine exposed rat liver tissue. Based on literature data, biological relevance in the early molecular process of hepatocarcinogenicity could be suggested for most of these potential biomarkers. However, in order to ensure reliable results and to create the prerequisites necessary for integration in routine toxicology studies in the future, these protein expression patterns need to be prevalidated using independent technology platforms. In the current study, we evaluated the usefulness of iTRAQ‘ reagent technology (Applied Biosystems, Framingham, USA), a recently introduced MS-based protein quantitation method, for verification of the 2-DE/MS biomarkers. In summary, the regulation of 26 2-DE/MS derived protein biomarkers could be verified. Proteins like HSP 90-beta, annexin A5, ketohexokinase, N -hydroxyarylamine sulfotransferase, ornithine aminotransferase, and adenosine kinase showed highly comparable fold changes using both proteomic quantitation strategies. In addition, iTRAQ analysis delivered further potential biomarkers with biological relevance to the processes of hepatocarcinogenicity: e.g. placental form of glutathione S-transferase (GST-P), carbonic anhydrase, and aflatoxin B1 aldehyde reductase. Our results show both the usefulness of iTRAQ reagent technology for biomarker prevalidation as well as for identification of further potential marker proteins, which are indicative for liver hepatocarcinogenicity. [source]


Differential Effects of Partial Hepatectomy and Carbon Tetrachloride Administration on Induction of Liver Cell Foci in a Model for Detection of Initiation Activity

CANCER SCIENCE, Issue 10 2001
Hiroki Sakai
Differential effects of partial hepatectomy (PH) and carbon tetrachloride (CC14) administration on induction of glutathione S-transferase placental form (GST-P)-positive foci were investigated in a model for detection of initiation activity. Firstly, we surveyed cell proliferation kinetics and fluctuation in cytochrome P450 (CYP) mRNA levels by means of relative-quantitative real-time reverse transcriptase-polymerase chain reaction (RT-PCR) and CYP 2E1 apoprotein amount by immuno-blotting (experiment I) after PH or CC14 administration. Next, to assess the interrelationships among cell proliferation, fluctuation of CYPs after PH or CC14 administration and induction of liver cell foci, the non-hepatocarcinogen, 1,2-dimethylhydrazine (DMH) was administered to 7-week-old male F344 rats and initiated populations were selected using the resistant hepatocyte model (experiment II). In experiment I, the values of all CYP isozyme mRNAs after PH or CC14 administration were drastically decreased at the 12-h tune point. From 72 h, mRNAs for all CYP isozymes began increasing, with complete recovery after 7 days. The CYP 2E1 apoprotein content in the PH group fluctuated weakly, whereas in the CC14 group it had decreased rapidly after 12 h and was still low at the 48 h point. In experiment II, induction of GST-P-positive foci was related to cell kinetics in the PH group, with about a 6-h time lag between tune for carcinogen administration giving greatest induction of GST-P-positive foci and peaks in bromodeoxyuridine (BrdU) labeling, presumably due to the necessity for bioactivation of DMH. With CC14 administration, induction of foci appeared dependent on the recovery of CYP 2E1. In conclusion, PH was able to induce cell proliferation with maintenance of CYP 2E1, therefore being advantageous for induction of liver cell foci in models to detect initiation activity. [source]