Placental Development (placental + development)

Distribution by Scientific Domains


Selected Abstracts


REVIEW ARTICLE: Endogenous Retroviruses in Trophoblast Differentiation and Placental Development

AMERICAN JOURNAL OF REPRODUCTIVE IMMUNOLOGY, Issue 4 2010
Sarah G. Black
Citation Black SG, Arnaud F, Palmarini M, Spencer TE. Endogenous retroviruses in trophoblast differentiation and placental development. Am J Reprod Immunol 2010 Endogenous retroviruses (ERVs) are present in the genome of all vertebrates and originated from infections of the germline of the host by exogenous retroviruses. ERVs have coevolved with their hosts for millions of years and are recognized to contribute to genome plasticity, protect the host against infection of related pathogenic and exogenous retroviruses, and play a vital role in development of the placenta. Consequently, some ERVs have been positively selected and maintained in the host genome throughout evolution. This review will focus on the critical role of ERVs in development of the mammalian placenta and specifically highlight the biological role of sheep JSRV-related endogenous betaretroviruses in conceptus (embryo and associated extraembryonic membranes) development. [source]


REVIEW ARTICLE: Placental Apoptosis in Health and Disease

AMERICAN JOURNAL OF REPRODUCTIVE IMMUNOLOGY, Issue 3 2010
Andrew N. Sharp
Citation Sharp AN, Heazell AEP, Crocker IP, Mor G. Placental apoptosis in health and disease. Am J Reprod Immunol 2010; 64: 159,169 Apoptosis, programmed cell death, is an essential feature of normal placental development but is exaggerated in association with placental disease. Placental development relies upon effective implantation and invasion of the maternal decidua by the placental trophoblast. In normal pregnancy, trophoblast apoptosis increases with placental growth and advancing gestation. However, apoptosis is notably exaggerated in the pregnancy complications, hydatidiform mole, pre-eclampsia, and intrauterine growth restriction (IUGR). Placental apoptosis may be initiated by a variety of stimuli, including hypoxia and oxidative stress. In common with other cell-types, trophoblast apoptosis follows the extrinsic or intrinsic pathways culminating in the activation of caspases. In contrast, the formation of apoptotic bodies is less clearly identified, but postulated by some to involve the clustering of apoptotic nuclei and liberation of this material into the maternal circulation. In addition to promoting a favorable maternal immune response, the release of this placental-derived material is thought to provoke the endothelial dysfunction of pre-eclampsia. Widespread apoptosis of the syncytiotrophoblast may also impair trophoblast function leading to the reduction in nutrient transport seen in IUGR. A clearer understanding of placental apoptosis and its regulation may provide new insights into placental pathologies, potentially suggesting therapeutic targets. [source]


Cx31 and Cx43 double-deficient mice reveal independent functions in murine placental and skin development

DEVELOPMENTAL DYNAMICS, Issue 3 2005
Mark Kibschull
Abstract The overlapping expression of gap junctional connexins in tissues has indicated that the channels may compensate for each other. During development, Cx31 and Cx43 are coexpressed in preimplantation embryos, in the spongiotrophoblast of the placenta and in the epidermis. This study shows that Cx31/Cx43 double-deficient mice exhibit the known phenotypes of the single-knockout strains but no combined effects. Thus, Cx43, coexpressed with Cx31 at midgestation in the spongiotrophoblast of the placenta, cannot be responsible for a partial rescue of the lethal Cx31 knockout phenotype, as assumed before (Plum et al. [ 2001] Dev Biol 231:334,337). It follows that both connexins have unique functions in placental development. Despite an altered expression of other epidermal connexin mRNAs, epidermal differentiation and physiology was unaltered by the absence of Cx31 and Cx43. Therefore, in epidermal and preimplantation development, gap junctional communication can probably be compensated by other isoforms coexpressed with Cx31 and Cx43. Developmental Dynamics 233:853,863, 2005. © 2005 Wiley-Liss, Inc. [source]


Reciprocal chemokine receptor and ligand expression in the human placenta: Implications for cytotrophoblast differentiation

DEVELOPMENTAL DYNAMICS, Issue 4 2004
Penelope M. Drake
Abstract At the onset of pregnancy, the human placenta, which forms the interface between the embryo/fetus and the mother, must rapidly develop into a life-sustaining organ. The many unusual processes entailed in placental development include the poorly understood phenomenon of maternal tolerance of the hemiallogeneic cells of the conceptus, including, most remarkably, placental trophoblasts that invade the uterine wall. To investigate whether this fetal organ exerts control over the maternal immune system at the level of leukocyte trafficking, we examined placental expression of chemokines, well-known cytokine regulators of leukocyte movements. In situ hybridization revealed abundant expression of 13 chemokines in the stromal but not the trophoblast compartment of chorionic villi. Potential roles for these molecules include recruitment of the resident macrophage (Hofbauer cell) population to the villi. In parallel, cytotrophoblast production of a panel of nine chemokine receptors was assessed by using RNase protection assays. The numerous receptors detected suggested the novel possibility that the paracrine actions of chemokine ligands derived from either the villous stroma or the decidua could mediate general aspects of placental development, with specific contributions to cytotrophoblast differentiation along the pathway that leads to uterine invasion. Developmental Dynamics 229:877,885, 2004. © 2004 Wiley-Liss, Inc. [source]


Essential role for ERK2 mitogen-activated protein kinase in placental development

GENES TO CELLS, Issue 11 2003
Naoya Hatano
Background:, Extracellular signal-regulated kinase 2 (ERK2) has been implicated in cell proliferation, differentiation, and survival. However, its role in vivo remains to be determined. Results:, Here we show that the targeted disruption of the mouse ERK2 gene results in embryonic lethality by E11.5 and severe abnormality of the placenta. In these animals, the labyrinthine layer of the placenta is very thin and few foetal blood vessels are observed. ERK2 mutants can be rescued by the transgenic expression of ERK2, demonstrating that these abnormalities are caused by ERK2-deficiency. Although ERK2-deficient fetuses are much smaller than wild-type littermates, this seems to be secondary to malfunction of the placenta. When the placental defect is rescued by tetraploid-aggregation, ERK2-deficient foetuses grow as well as littermate controls. Conclusion:, These observations indicate that ERK2 is essential for placental development and suggest that ERK2 in the trophoblast compartment may be indispensable for the vascularization of the labyrinth. [source]


Altered levels of insulin-like growth factor binding protein proteases in preeclampsia and intrauterine growth restriction

PRENATAL DIAGNOSIS, Issue 9 2010
Julian K. Christians
Abstract Intrauterine growth restriction (IUGR) and preeclampsia (PE) are leading causes of perinatal and maternal morbidity and mortality. Many studies have found association between low levels of insulin-like growth factor binding protein (IGFBP) proteases in the first trimester maternal circulation and the risk of subsequent development of PE and/or IUGR. These results are generally interpreted to reflect decreased production of the proteases by the placenta, leading to reduced proteolysis of IGFBPs and lower free levels of insulin-like growth factor (IGF), resulting in diminished feto-placental development. However, the association between low circulating levels of placental proteins early in pregnancy and the subsequent development of IUGR and/or PE could be due to low exchange in the placenta and not due to reduced production. In contrast, late in pregnancy, the circulating levels of these proteins and their expression in the placenta are often elevated in PE, which may reflect upregulation to compensate for abnormal placental development, that is an adaptive mechanism to increase IGFBP proteolysis, increase local IGF levels and promote feto-placental growth. Further research into the biological mechanisms underlying these associations will aid the identification of high-risk pregnancies and the development of therapeutic targets for diseases for which there are presently no preventative measures. Copyright © 2010 John Wiley & Sons, Ltd. [source]


PLAC1 (Placenta-specific 1): a novel, X-linked gene with roles in reproductive and cancer biology

PRENATAL DIAGNOSIS, Issue 6 2010
Michael Fant
Abstract Placenta-specific 1 (PLAC1) is a recently described X-linked gene with expression restricted primarily to cells derived from trophoblast lineage during embryonic development. PLAC1 localizes to a region of the X chromosome thought to be important in placental development although its role in this process has not been defined. This review summarizes our current understanding of its expression, regulation, and function. PLAC1 is expressed throughout human pregnancy by the differentiated trophoblast and localizes to membranous structures in the syncytiotrophoblast, including the microvillous plasma membrane surface. Recent studies have demonstrated that PLAC1 is also expressed by a wide variety of human cancers. Studies of the PLAC1 promoter regions indicate that its expression in both normal placenta and cancer cells is driven by specific interactions involving a combination of transcription factors. Although functional insight into PLAC1 in the normal trophoblast is lacking, preliminary studies suggest that cancer-derived PLAC1 has the potential to promote tumor growth and function. In addition, it also appears to elicit a specific immunologic response that may influence survival in some cancer patients, suggesting that it may provide a therapeutic target for the treatment of some cancers. We also discuss a potential role for PLAC1 as a biomarker predictive of specific pregnancy complications, such as preeclampsia. Copyright © 2010 John Wiley & Sons, Ltd. [source]


Abnormal Expression of TIMP-2, SOD, Vimentin and PAI Proteins in Cloned Bovine Placentae

REPRODUCTION IN DOMESTIC ANIMALS, Issue 4 2009
H-R Kim
Contents Cloned mammals suffer from high rates of placental abnormality and foetal loss during pregnancy. We previously used 2-D gel electrophoresis and mass spectrometry for global proteomic analysis of cloned and normal bovine placentae to identify differential protein expression patterns. Here, we used Western blot analysis to confirm the expression levels of several pregnancy-related proteins putatively identified as being differentially expressed in somatic cell nuclear transfer (SCNT) vs normal bovine placentae. The expression levels of tissue inhibitor of metalloproteinase-2 (TIMP-2), its downstream protein, matrix metalloproteinase-2 (MMP-2), superoxide dismutase (SOD), vimentin and plasminogen activator inhibitor-1 (PAI) were analysed in the placentae of SCNT cloned Korean native cattle that died immediately after birth and in normal placentae obtained by AI. Our results revealed that TIMP-2 and SOD were up-regulated in SCNT placenta compared with normal placenta, whereas MMP-2 levels were comparable in cloned and normal placentae, and vimentin and PAI were significantly down-regulated in SCNT compared with normal placentae. Our results suggest that key proteins of placental development are abnormally expressed in SCNT cloned bovine placentae, probably resulting in abnormal placental function and clonal mortality. [source]


Early Pregnancy Diagnosis by Serum Progesterone and Ultrasound in Sheep Carrying Somatic Cell Nuclear Transfer-Derived Pregnancies

REPRODUCTION IN DOMESTIC ANIMALS, Issue 2 2008
B Alexander
Contents Early pregnancy diagnosis and monitoring play an important role following embryo transfer in sheep. The aims of the current study were to investigate (i) the pattern of serum progesterone profiles in sheep carrying somatic cell nuclear transfer (SCNT)-derived (clone) pregnancies, and (ii) the frequency of pregnancy loss during development following SCNT embryo transfer. Sheep SCNT embryos were made using standard nuclear transfer techniques. Day 7 embryos were surgically transferred to oestrus-synchronized recipients (n = 27). As a control, normal fertile ewes (n = 12) were bred by natural breeding. Serum was collected from all the ewes on the day of estrus (day 0 sample), 7 days post-estrus (day 7 sample) and 19 days post-estrus (day 19 sample) and every 10 days thereafter until lambing or pregnancy loss occurred. Serum progesterone (P4) was assessed using enzyme immunoassay. Pregnancy was confirmed by ultrasound scanning on day 35 of pregnancy followed by subsequent scanning every 10 days. In control ewes, pregnancy rate on day 35 was 83.3% (10/12), whereas in the ewes that received SCNT embryos, it was 22.2% (6/27; p < 0.05). The day 45 pregnancy rate in the control ewes was 83.3%, whereas in the SCNT embryo recipients it was 11.0% (p < 0.05). Hormone analysis revealed that SCNT embryo recipients exhibited a significantly lower P4 profiles at different time points in pregnancy compared to controls (p < 0.05). This study highlights the use of serum progesterone in combination with ultrasound for the investigation of embryo loss and crucial times during development of normal and SCNT embryos in sheep. Further, the serum P4 levels directly reflect the degree of placental development in these two groups. [source]


REVIEW ARTICLE: Endogenous Retroviruses in Trophoblast Differentiation and Placental Development

AMERICAN JOURNAL OF REPRODUCTIVE IMMUNOLOGY, Issue 4 2010
Sarah G. Black
Citation Black SG, Arnaud F, Palmarini M, Spencer TE. Endogenous retroviruses in trophoblast differentiation and placental development. Am J Reprod Immunol 2010 Endogenous retroviruses (ERVs) are present in the genome of all vertebrates and originated from infections of the germline of the host by exogenous retroviruses. ERVs have coevolved with their hosts for millions of years and are recognized to contribute to genome plasticity, protect the host against infection of related pathogenic and exogenous retroviruses, and play a vital role in development of the placenta. Consequently, some ERVs have been positively selected and maintained in the host genome throughout evolution. This review will focus on the critical role of ERVs in development of the mammalian placenta and specifically highlight the biological role of sheep JSRV-related endogenous betaretroviruses in conceptus (embryo and associated extraembryonic membranes) development. [source]


REVIEW ARTICLE: Placental Apoptosis in Health and Disease

AMERICAN JOURNAL OF REPRODUCTIVE IMMUNOLOGY, Issue 3 2010
Andrew N. Sharp
Citation Sharp AN, Heazell AEP, Crocker IP, Mor G. Placental apoptosis in health and disease. Am J Reprod Immunol 2010; 64: 159,169 Apoptosis, programmed cell death, is an essential feature of normal placental development but is exaggerated in association with placental disease. Placental development relies upon effective implantation and invasion of the maternal decidua by the placental trophoblast. In normal pregnancy, trophoblast apoptosis increases with placental growth and advancing gestation. However, apoptosis is notably exaggerated in the pregnancy complications, hydatidiform mole, pre-eclampsia, and intrauterine growth restriction (IUGR). Placental apoptosis may be initiated by a variety of stimuli, including hypoxia and oxidative stress. In common with other cell-types, trophoblast apoptosis follows the extrinsic or intrinsic pathways culminating in the activation of caspases. In contrast, the formation of apoptotic bodies is less clearly identified, but postulated by some to involve the clustering of apoptotic nuclei and liberation of this material into the maternal circulation. In addition to promoting a favorable maternal immune response, the release of this placental-derived material is thought to provoke the endothelial dysfunction of pre-eclampsia. Widespread apoptosis of the syncytiotrophoblast may also impair trophoblast function leading to the reduction in nutrient transport seen in IUGR. A clearer understanding of placental apoptosis and its regulation may provide new insights into placental pathologies, potentially suggesting therapeutic targets. [source]


Initial Development of Bovine Placentation (Bos indicus) from the Point of View of the Allantois and Amnion

ANATOMIA, HISTOLOGIA, EMBRYOLOGIA, Issue 5 2009
A. C. Assis Neto
Summary The aim of this study was to perform a morphological characterization of the initial bovine placental development, between 20 and 70 days post-insemination (p.i.), with emphasis on the differentiation of the allantois and amnion. After collection, the conceptuses were dissected, macroscopically measured and photographically documented. The extraembryonic membranes were cut into fragments measuring 5 cm2, and then fixed in 4% paraformaldehyde for analysis using light microscopy, and in 2.5% glutaraldehyde for use in scanning and transmission electron microscopy. The extraembryonic and fetal membranes presented variable degrees of development throughout the periods analysed. The macroscopic appearance of vascularization of the allantois, its attempt to merge with the chorium and the effective appearance of the first cotyledons in development were the events observed from 30 to 40 days of pregnancy. The measurements of the amnion increased gradually as gestation developed. The allantoic epithelia presented cellular dimorphism from 20 to 25 days of pregnancy, but was shown to be immature from 60 to 70 days of pregnancy. [source]