Place Preference (place + preference)

Distribution by Scientific Domains

Kinds of Place Preference

  • conditioned place preference


  • Selected Abstracts


    Decreased Sensitivity to Ethanol Reward in Adolescent Mice as Measured by Conditioned Place Preference

    ALCOHOLISM, Issue 7 2009
    Shelly D. Dickinson
    Background:, Many preclinical studies have demonstrated age-related differential sensitivity to various effects of ethanol between adolescent and adult animals. However, published data addressing possible differences in ethanol's motivational effects are sparse, particularly in mice. The present study examined age-related differences in the conditioned rewarding effects of ethanol in DBA/2J mice. Methods:, In the first experiment an unbiased place conditioning procedure was used to determine the rewarding effects of 2 g/kg ethanol in adult and adolescent DBA/2J mice. In a subsequent place conditioning experiment, the effects of 2 and 4 g/kg were assessed in adolescent mice. Results:, Adolescents demonstrated a place preference with the high dose of 4 g/kg but not with a more moderate dose of 2 g/kg. In contrast, 2 g/kg was sufficient to produce place preference in adult mice. Conclusions:, Adolescents are less sensitive than adults to the rewarding effects of ethanol but can experience reward with high doses. These results extend the current literature on ethanol's effects in adolescent animals. [source]


    Chronic social stress in adolescence influenced both amphetamine conditioned place preference and locomotor sensitization

    DEVELOPMENTAL PSYCHOBIOLOGY, Issue 5 2008
    I. Z. Mathews
    Abstract We previously reported that chronic social stress (SS) in adolescence, but not in adulthood, increased the locomotor-activating effects of nicotine in females, and not males, when tested in adulthood. However, SS rats had decreased locomotor response to nicotine when tested in adolescence. Here, we investigated age-related changes in the effects of SS on both conditioned place preference (CPP) and locomotor sensitization to amphetamine. In the CPP experiment, SS females tested in adolescence had increased preference for the 1.0 mg/kg dose of amphetamine, whereas SS rats of both sexes showed a decrease in CPP for the 0.5 mg/kg dose when tested as adults. Irrespective of time of testing, SS males and females had enhanced locomotor sensitization compared to controls. Thus, adolescent SS produced both immediate and enduring effects on behavioral responses to amphetamine, likely by altering the development of the mesocorticolimbic dopamine system, which holds implications for vulnerability to addiction. © 2008 Wiley Periodicals, Inc. Dev Psychobiol 50: 451,459, 2008. [source]


    REVIEW: Behavioral evidence for the significance of serotoninergic (5-HT) receptors in cocaine addiction

    ADDICTION BIOLOGY, Issue 3 2010
    gorzata Filip
    ABSTRACT Cocaine addiction has somatic, psychological, psychiatric, socio-economic and legal implications in the developed world. Presently, there is no medication approved for the treatment of cocaine addiction. In recent years, data from the literature (pre-clinical studies and clinical trials) have provided several lines of evidence that serotonin (5-HT) and 5-HT receptors play a modulatory role in the mechanisms of action of cocaine. Here we review the contribution of 5-HT receptor subtypes to cocaine sensitization, discrimination, conditioned place preference, self-administration, reinstatement of seeking behavior and withdrawal symptoms in laboratory animals. Additionally, the consequences of chronic cocaine exposure on particular 5-HT receptor-assigned functions in pre-clinical studies are presented. [source]


    PRECLINICAL STUDY: FULL ARTICLE: Effects of fatty acid amide hydrolase inhibition on neuronal responses to nicotine, cocaine and morphine in the nucleus accumbens shell and ventral tegmental area: involvement of PPAR-, nuclear receptors

    ADDICTION BIOLOGY, Issue 3 2010
    Antonio Luchicchi
    ABSTRACT The endocannabinoid system regulates neurotransmission in brain regions relevant to neurobiological and behavioral actions of addicting drugs. We recently demonstrated that inhibition by URB597 of fatty acid amide hydrolase (FAAH), the main enzyme that degrades the endogenous cannabinoid N-acylethanolamine (NAE) anandamide and the endogenous non-cannabinoid NAEs oleoylethanolamide and palmitoylethanolamide, blocks nicotine-induced excitation of ventral tegmental area (VTA) dopamine (DA) neurons and DA release in the shell of the nucleus accumbens (ShNAc), as well as nicotine-induced drug self-administration, conditioned place preference and relapse in rats. Here, we studied whether effects of FAAH inhibition on nicotine-induced changes in activity of VTA DA neurons were specific for nicotine or extended to two drugs of abuse acting through different mechanisms, cocaine and morphine. We also evaluated whether FAAH inhibition affects nicotine-, cocaine- or morphine-induced actions in the ShNAc. Experiments involved single-unit electrophysiological recordings from DA neurons in the VTA and medium spiny neurons in the ShNAc in anesthetized rats. We found that URB597 blocked effects of nicotine and cocaine in the ShNAc through activation of both surface cannabinoid CB1-receptors and alpha-type peroxisome proliferator-activated nuclear receptor. URB597 did not alter the effects of either cocaine or morphine on VTA DA neurons. These results show that the blockade of nicotine-induced excitation of VTA DA neurons, which we previously described, is selective for nicotine and indicate novel mechanisms recruited to regulate the effects of addicting drugs within the ShNAc of the brain reward system. [source]


    PRECLINICAL STUDY: FULL ARTICLE: Ghrelin increases intake of rewarding food in rodents

    ADDICTION BIOLOGY, Issue 3 2010
    Emil Egecioglu
    ABSTRACT We investigated whether ghrelin action at the level of the ventral tegmental area (VTA), a key node in the mesolimbic reward system, is important for the rewarding and motivational aspects of the consumption of rewarding/palatable food. Mice with a disrupted gene encoding the ghrelin receptor (GHS-R1A) and rats treated peripherally with a GHS-R1A antagonist both show suppressed intake of rewarding food in a free choice (chow/rewarding food) paradigm. Moreover, accumbal dopamine release induced by rewarding food was absent in GHS-R1A knockout mice. Acute bilateral intra-VTA administration of ghrelin increased 1-hour consumption of rewarding food but not standard chow. In comparison with sham rats, VTA-lesioned rats had normal intracerebroventricular ghrelin-induced chow intake, although both intake of and time spent exploring rewarding food was decreased. Finally, the ability of rewarding food to condition a place preference was suppressed by the GHS-R1A antagonist in rats. Our data support the hypothesis that central ghrelin signaling at the level of the VTA is important for the incentive value of rewarding food. [source]


    PRECLINICAL STUDY: Acquisition and reinstatement of MDMA-induced conditioned place preference in mice pre-treated with MDMA or cocaine during adolescence

    ADDICTION BIOLOGY, Issue 4 2009
    Manuel Daza-Losada
    ABSTRACT Those who take ecstasy are more likely to consume other drugs than non-users with cocaine abuse being reported by 75.5% of high school student MDMA (± 3,4-methylenedioxymetamphetamine hydrochloride) users. The aim of this work was to evaluate the effects of exposure during adolescence to MDMA, cocaine or to both drugs on the MDMA-induced conditioned place preference (CPP) in adult mice. Animals received two daily administrations of saline, 10 mg/kg of MDMA, 25 mg/kg of cocaine or 10 mg/kg of MDMA plus 25 mg/kg of cocaine over 3 days (from PD28 to 30). Three weeks after pre-treatment, the MDMA-induced CPP procedure was initiated (PD52). Acquisition of CPP was induced with a sub-threshold dose of MDMA (1.25 mg/kg) only in animals treated during adolescence with MDMA alone. Preference was established in all the groups after conditioning with 10 mg/kg of MDMA, while the time required to achieve extinction was longer in those pre-treated with cocaine or MDMA alone (46 and 28 sessions, respectively). Moreover, preference was reinstated with progressively lower priming doses of MDMA in mice pre-treated with MDMA or cocaine alone. These results demonstrate that early exposure to MDMA or cocaine induces long-lasting changes that last until adulthood and modify the response of animals to MDMA. [source]


    PRECLINICAL STUDY: Modulation of MDMA-induced behavioral and transcriptional effects by the delta opioid antagonist naltrindole in mice

    ADDICTION BIOLOGY, Issue 3 2009
    Emilie Belkaļ
    ABSTRACT The delta opioid system is involved in the behavioral effects of various drugs of abuse. However, only a few studies have focused on the possible interactions between the opioid system and the effects of 3,4-methylenedioxymethamphetamine (MDMA). In order to examine the possible role of the delta opioid system in MDMA-induced behaviors in mice, locomotor activity and conditioned place preference (CPP) were investigated in the presence of naltrindole (NTI), a selective delta opioid antagonist. Moreover, the consequences of acute and chronic MDMA administration on pro-enkephalin (Penk) and pro-opiomelanocortin (Pomc) gene expression were assessed by real-time quantitative polymerase chain reaction (QPCR). The results showed that, after acute MDMA administration (9 mg/kg; i.p.), NTI (5 mg/kg, s.c.) was able to totally block MDMA-induced hyperlocomotion. Penk gene expression was not modulated by acute MDMA, but a decrease of Pomc gene expression was observed, which was not antagonized by NTI. Administration of the antagonist prevented the acquisition of MDMA-induced CPP, suggesting an implication of the delta opioid receptors in this behavior. Following chronic MDMA treatment, only the level of Pomc was modulated. The observed increase was totally blocked by NTI pre-treatment. All these results confirm the interactions between the delta opioid system (receptors and peptides) and the effects of MDMA. [source]


    PRECLINICAL STUDY: The effect of naltrexone on amphetamine-induced conditioned place preference and locomotor behaviour in the rat

    ADDICTION BIOLOGY, Issue 3 2009
    Jenny Häggkvist
    ABSTRACT Whereas amphetamine and other psychostimulants primarily act on the dopamine system, there is also evidence that other neurotransmitter systems, such as the endogenous opioid system, modulate psychostimulant-induced effects. Several studies have investigated the role of opioid antagonists on cocaine-induced conditioned place preference (CPP), but there is limited information about the interaction with amphetamines. The aim of the present study was to investigate the effect of the opioid receptor antagonist, naltrexone (NTX) on the conditioning, expression and reinstatement of amphetamine-induced place preference. In addition, the effect of NTX on locomotor behaviour was measured during all sessions. During training, animals were conditioned with amphetamine (2 mg/kg) to induce place preference. In order to extinguish the conditioned behaviour, animals received saline for 12 days. Reinstatement of CPP was induced by a priming dose of amphetamine (0.5 mg/kg). The interaction of NTX and amphetamine was evaluated using three paradigms of CPP: with NTX (vehicle, 0.3, 1.0 and 3.0 mg/kg) administered either 30 minutes prior to amphetamine conditioning, or 30 minutes before the expression, or 30 minutes before the amphetamine priming to induce reinstatement. Naltrexone had no effect on the conditioning, the expression or the reinstatement induced by a priming dose of amphetamine. Further, NTX by itself did not induce place preference or place aversion. In contrast, NTX significantly attenuated the locomotor response to a priming dose of amphetamine without affecting general locomotor behaviour. The results suggest differences in opioid modulation of amphetamine-induced behaviours in the rat. [source]


    PRECLINICAL STUDY: Proteomic analysis of methamphetamine-induced reinforcement processes within the mesolimbic dopamine system

    ADDICTION BIOLOGY, Issue 3-4 2008
    Moon Hee Yang
    ABSTRACT Methamphetamine (MAP) is a commonly used, addictive drug, and a powerful stimulant that dramatically affects the central nervous system. In this study, we used the conditioned place preference (CPP) paradigm in order to study the reinforcing properties of MAP and the herewith associated changes in proteins within the mesolimbic dopamine system. A CPP was induced by MAP after three intermittent intraperitoneal injections (1 mg/kg) in rats and protein profiles in the nucleus accumbens, striatum, prefrontal cortex, cingulate cortex and hippocampus were compared with a saline-treated control group. In addition, a group of animals was run through extinction and protein profiles were compared with a non-extinguished group. Protein screening was conducted using two-dimensional electrophoresis analysis which identified 27 proteins in the group that showed MAP-induced CPP. Some of the proteins were confirmed by Western lot analysis. Identified proteins had functions related to the cytoskeleton, transport/endocytosis or exocytosis (e.g. profilin-2 and syntaxin-binding protein), and signal transduction, among others. [source]


    REVIEW: Behavioural assessment of drug reinforcement and addictive features in rodents: an overview

    ADDICTION BIOLOGY, Issue 1 2006
    Carles Sanchis-Segura
    ABSTRACT Some psychoactive drugs are abused because of their ability to act as reinforcers. As a consequence behavioural patterns (such as drug-seeking/drug-taking behaviours) are promoted that ensure further drug consumption. After prolonged drug self-administration, some individuals lose control over their behaviour so that these drug-seeking/taking behaviours become compulsive, pervading almost all life activities and precipitating the loss of social compatibility. Thus, the syndrome of addictive behaviour is qualitatively different from controlled drug consumption. Drug-induced reinforcement can be assessed directly in laboratory animals by either operant or non-operant self-administration methods, by classical conditioning-based paradigms such as conditioned place preference or sign tracking, by facilitation of intracranial electric self-stimulation, or, alternatively by drug-induced memory enhancement. In contrast, addiction cannot be modelled in animals, at least as a whole, within the constraints of the laboratory. However, various procedures have been proposed as possible rodent analogues of addiction's major elements including compulsive drug seeking, relapse, loss of control/impulsivity, and continued drug consumption despite negative consequences. This review provides an extensive overview and a critical evaluation of the methods currently used for studying drug-induced reinforcement as well as specific features of addictive behaviour. In addition, comic strips that illustrate behavioural methods used in the drug abuse field are provided given for free download under http://www.zi-mannheim/psychopharmacology.de [source]


    Effects of MPEP on expression of food-, MDMA- or amphetamine-conditioned place preference in rats

    ADDICTION BIOLOGY, Issue 3 2005
    Volker Herzig
    Recent studies have revealed the effectiveness of 2-methyl-6-(phenylethynyl)pyridine (MPEP), a highly selective antagonist of metabotropic glutamate receptors subtype 5 (mGluR5), in conditioned drug reward. In a previous study we showed that MPEP blocks expression of context-conditioned morphine- but not cocaine reward in the rat. The present study now examines the effectiveness of MPEP in the expression of context-conditioned food, MDMA (,ecstasy?) or amphetamine reward. Therefore, three groups of rats were conditioned either to food, MDMA or amphetamine in the conditioned place preference (CPP) paradigm. After conditioning, CPP expression and locomotion were determined simultaneously in the presence and absence of the respective reward (i.e. food or drug), or after application of 50?mg/kg MPEP (the dose that was most effective in reducing morphine CPP expression in our previous study). As a result, MPEP reduced locomotion in all groups. Furthermore, only expression of amphetamine CPP was inhibited by MPEP, while expression of food and MDMA CPP was not affected, suggesting that the MPEP-induced inhibition of amphetamine CPP expression was not causally linked to the reduction of locomotion. Overall, we conclude that MPEP reduces expression of context-conditioned amphetamine but not MDMA or food reward. [source]


    Netrin-1 receptor-deficient mice show enhanced mesocortical dopamine transmission and blunted behavioural responses to amphetamine

    EUROPEAN JOURNAL OF NEUROSCIENCE, Issue 11 2007
    Alanna Grant
    Abstract The mesocorticolimbic dopamine (DA) system is implicated in neurodevelopmental psychiatric disorders including schizophrenia but it is unknown how disruptions in brain development modify this system and increase predisposition to cognitive and behavioural abnormalities in adulthood. Netrins are guidance cues involved in the proper organization of neuronal connectivity during development. We have hypothesized that variations in the function of DCC (deleted in colorectal cancer), a netrin-1 receptor highly expressed by DA neurones, may result in altered development and organization of mesocorticolimbic DA circuitry, and influence DA function in the adult. To test this hypothesis, we assessed the effects of reduced DCC on several indicators of DA function. Using in-vivo microdialysis, we showed that adult mice that develop with reduced DCC display increased basal DA levels in the medial prefrontal cortex and exaggerated DA release in response to the indirect DA agonist amphetamine. In contrast, these mice exhibit normal levels of DA in the nucleus accumbens but significantly blunted amphetamine-induced DA release. Concomitantly, using conditioned place preference, locomotor activity and prepulse inhibition paradigms, we found that reduced DCC diminishes the rewarding and behavioural-activating effects of amphetamine and protects against amphetamine-induced deficits in sensorimotor gating. Furthermore, we found that adult DCC-deficient mice exhibit altered dendritic spine density in layer V medial prefrontal cortex pyramidal neurones but not in nucleus accumbens medium spiny neurones. These findings demonstrate that reduced DCC during development results in a behavioural phenotype opposite to that observed in developmental models of schizophrenia and identify DCC as a critical factor in the development of DA function. [source]


    Metabotropic glutamate receptor 5 localized in the limbic forebrain is critical for the development of morphine-induced rewarding effect in mice

    EUROPEAN JOURNAL OF NEUROSCIENCE, Issue 6 2004
    Takeshi Aoki
    Abstract The aim of the present study was to clarify the role of the metabotropic glutamate 5 (mGlu5) receptor subtype in the development of rewarding effect induced by a prototypical µ-opioid receptor agonist morphine in the mouse. In the conditioned place preference paradigm, intracerebroventricular (i.c.v.) administration of a selective mGlu5 receptor antagonist, 2-methyl-6-(phenylethynyl)-pyridine (MPEP), attenuated the morphine-induced rewarding effects. Using immunoblot analysis, we confirmed that the increased level of protein kinase C, (PKC,) isoform was observed in the limbic forebrain of ICR mice conditioned with morphine. Here we found for the first time that the treatment with MPEP significantly inhibited the up-regulation of PKC, isoform in the limbic forebrain of mice showing the significant place preference. Furthermore, it should be mentioned that the protein level of mGlu5 was significantly increased in membrane preparations of the limbic forebrain obtained from morphine-conditioned mice compared to those from saline-conditioned mice. As well as the result from the immunoblot analysis, we demonstrated using the receptor binding assay that the number of mGlu5 receptors in the mouse limbic forebrain was significantly increased by morphine conditioning. The present data provide direct evidence that the activation of mGlu5 receptor linked to the increased PKC, isoform in the mouse limbic forebrain is implicated in the development of rewarding effect of morphine. [source]


    Differential roles of corticotropin-releasing factor receptor subtypes 1 and 2 in opiate withdrawal and in relapse to opiate dependence

    EUROPEAN JOURNAL OF NEUROSCIENCE, Issue 12 2000
    Lin Lu
    Abstract The possible effects on the morphine withdrawal signs of the nonspecific corticotropin-releasing factor (CRF) receptor antagonist ,-helical CRF, the selective CRF receptor subtype 1 antagonist CP-154,526 and the selective CRF receptor subtype 2 antagonist antisauvagine-30 (AS-30) were investigated in rats. The most withdrawal signs, including jumping, teeth chatter, writhing, shakes, lacrimation, piloerection, irritability and diarrhoea, were attenuated by pretreatment with ,-helical CRF (10 µg i.c.v.) and CP-154,526 (30 mg/kg i.p.). However, no morphine withdrawal signs except for diarrhea were significantly affected by pretreatment with AS-30 (10 µg, i.c.v.). To investigate the possible role of different CRFR antagonists (,-helical CRF, CP-154,526 and AS-30) in relapse to opiate dependence, the 28-day extinction of morphine-conditioned place preference (CPP) was used. The morphine-CPP disappeared following a 28-day extinction and then was reactivated by a single injection of 10 mg/kg morphine. Pretreatment with ,-helical CRF (10 µg, i.c.v.) and CP-154,526 (30 mg/kg, i.p.) could significantly block this reactivation of morphine-CPP. In contrast, pretreatment with AS-30 (1 or 10 µg i.c.v.) did not affect this reactivation of morphine-CPP. The present study demonstrated that activation of the CRF receptor is involved in morphine withdrawal signs and relapse to morphine dependence, and that the role of CRF receptor subtypes 1 and 2 in withdrawal and reactivation of morphine dependence is not identical. CRF receptor subtype 1, but not subtype 2, is largely responsible for the action of the CRF system on opiate dependence. These results suggest that the CRF receptor antagonists, particularly the CRF receptor subtype 1 antagonist, might be of some value in the treatment and prevention of drug dependence. [source]


    Suppression of c-fos induction in the nucleus accumbens prevents acquisition but not expression of morphine-conditioned place preference

    EUROPEAN JOURNAL OF NEUROSCIENCE, Issue 9 2000
    Bryan K. Tolliver
    Abstract The c-fos immediate-early gene is induced by morphine and other drugs of abuse in the nucleus accumbens (NAc), a mesolimbic region implicated in drug abuse and reward. This study examined the role of c-fos in the acquisition and expression of the conditioned place paradigm (CPP) in the rat by suppressing Fos protein expression with c-fos antisense oligodeoxynucleotides (ODNs). CPP was completely prevented by c-fos antisense ODN infused bilaterally into the NAc prior to each systemic morphine injection, whereas sense and missense NAc injections had no effect on CPP. NAc administration of c-fos antisense ODN after the last systemic morphine conditioning session did not affect the expression of morphine-CPP. These results suggest that c-fos expression in NAc is necessary for the acquisition but not expression of morphine-CPP, and they have important implications for understanding conditioned behaviours and drug craving and addiction. [source]


    Perception of sweet taste is important for voluntary alcohol consumption in mice

    GENES, BRAIN AND BEHAVIOR, Issue 1 2008
    Y. A. Blednov
    To directly evaluate the association between taste perception and alcohol intake, we used three different mutant mice, each lacking a gene expressed in taste buds and critical to taste transduction: ,-gustducin (Gnat3), Tas1r3 or Trpm5. Null mutant mice lacking any of these three genes showed lower preference score for alcohol and consumed less alcohol in a two-bottle choice test, as compared with wild-type littermates. These null mice also showed lower preference score for saccharin solutions than did wild-type littermates. In contrast, avoidance of quinine solutions was less in Gnat3 or Trpm5 knockout mice than in wild-type mice, whereas Tas1r3 null mice were not different from wild type in their response to quinine solutions. There were no differences in null vs. wild-type mice in their consumption of sodium chloride solutions. To determine the cause for reduction of ethanol intake, we studied other ethanol-induced behaviors known to be related to alcohol consumption. There were no differences between null and wild-type mice in ethanol-induced loss of righting reflex, severity of acute ethanol withdrawal or conditioned place preference for ethanol. Weaker conditioned taste aversion (CTA) to alcohol in null mice may have been caused by weaker rewarding value of the conditioned stimulus (saccharin). When saccharin was replaced by sodium chloride, no differences in CTA to alcohol between knockout and wild-type mice were seen. Thus, deletion of any one of three different genes involved in detection of sweet taste leads to a substantial reduction of alcohol intake without any changes in pharmacological actions of ethanol. [source]


    Dorsal/ventral hippocampus, fornix, and conditioned place preference

    HIPPOCAMPUS, Issue 2 2001
    Janina Ferbinteanu
    Abstract Conditioned place preference (CPP) is a learning paradigm requiring formation of associations between reward and particular locations. White and McDonald (Behav Brain Res 1993;55:269,281) demonstrated that amygdala (AMG) lesions impair, while fornix (Fx) lesions enhance learning of this task. In the present experiments, we replicated the effects of AMG and Fx lesions, but we also found that complete hippocampal (HPC) lesions interfere with normal performance. Thus, the effects of Fx and HPC lesions on CPP are opposite. This is in contrast with spatial learning in the water maze. Because it has been demonstrated that damage of dorsal HPC interferes to a greater extent with spatial learning than damage of ventral HPC, we also tested animals with either dorsal or ventral HPC disruptions on CPP. Lesions limited to dorsal HPC were followed by impairment on this task. In contrast, lesions limited to ventral HPC resulted in enhanced learning. We argue that Fx and HPC lesions do not have interchangeable effects in all learning paradigms. To explain the complex pattern of results presently obtained, we propose a novel hypothesis regarding behavioral functions of HPC neural circuits. Implications regarding the interaction between memory systems are also considered. Hippocampus 2001;11:187,200. © 2001 Wiley-Liss, Inc. [source]


    Role of Dopamine D1 Receptors and Extracellular Signal Regulated Kinase in the Motivational Properties of Acetaldehyde as Assessed by Place Preference Conditioning

    ALCOHOLISM, Issue 4 2010
    Liliana Spina
    Background:, The role of dopamine D1 receptors and Extracellular signal Regulated Kinase (ERK) in the motivational properties of drugs can be studied by place-conditioning. Recent advances have shown that the motivational properties of ethanol, determined by place-conditioning, are mediated by its metabolic conversion into acetaldehyde. To date, the role of D1 receptors and ERK activation in acetaldehyde-elicited place preference has not been determined. The aim of this study was to assess the role of D1 receptors blockade and MEK inhibition in the acquisition of acetaldehyde-elicited conditioned place preference. Methods:, Male Sprague,Dawley rats were subjected to repeated pairings with 1 compartment of the conditioning apparatus immediately following acetaldehyde (20 mg/kg i.g.) or ethanol (1 g/kg i.g.) administration. The D1 receptor antagonist, SCH 39166 (50 ,g/kg s.c.), was administered 10 minutes before acetaldehyde or ethanol administration. In order to study the role of activated ERK in the acetaldehyde-elicited place preference, rats were administered the MEK inhibitor, PD98059 (1, 30, and 90 ,g i.c.v.), 10 or 30 minutes before acetaldehyde. To verify the specificity of these effects, we also studied whether PD98059 pretreatment could affect morphine (1 mg/kg s.c.)-elicited place preference. Results:, Both acetaldehyde and ethanol elicited significant place preferences and these were prevented by pretreatment with SCH 39166. In addition, pretreatment with PD98059, dose (30 and 90 but not 1 ,g i.c.v.) and time (10 but not 30 minutes before) dependently, prevented the acquisition of acetaldehyde- and significantly reduced the acquisition of morphine-elicited conditioned place preference. Conclusions:, These results confirm that acetaldehyde and ethanol elicit conditioned place preference and demonstrate that D1 receptors are critically involved in these effects. Furthermore, the finding that PD98059 prevents the acquisition of acetaldehyde-elicited conditioned place preference highlights the importance of the D1 receptor,ERK pathway in its motivational effects. [source]


    Melatonin enhances the rewarding properties of morphine: involvement of the nitric oxidergic pathway

    JOURNAL OF PINEAL RESEARCH, Issue 4 2007
    Noushin Yahyavi-Firouz-Abadi
    Abstract:, Melatonin has different interactions with opioids including the enhancement of the analgesic effects of morphine and also reversal of tolerance and dependence to morphine. The present study assessed the effect of melatonin on morphine reward in mice using a conditioned place preference (CPP) paradigm. Our data showed that subcutaneous administration of morphine (1,7.5 mg/kg) significantly increased the time spent in the drug-paired compartment in a dose-dependent manner. Intraperitoneal (i.p.) administration of melatonin (1,40 mg/kg) alone did not induce either CPP or conditioned place aversion (CPA), while the combination of melatonin (5,20 mg/kg) and sub-effective dose of morphine (0.5 mg/kg) led to rewarding effect. We further investigated the involvement of the nitric oxidergic pathway in the enhancing effect of melatonin on morphine CPP, by a general nitric oxide synthase inhibitor, NG -nitro- l -arginine methyl ester (l -NAME). l -NAME (1 and 5 mg/kg, i.p.) alone or in combination with morphine (0.5 mg/kg) did not show any significant CPP or CPA. Co-administration of l -NAME (5 mg/kg) with an ineffective combination of melatonin (1 mg/kg) plus morphine (0.5 mg/kg) produced significant CPP that may imply the similarity of action of melatonin and l -NAME and involvement of the nitric oxidergic pathway in this regard. Our results indicate that pretreatment of animals with melatonin enhances the rewarding properties of morphine via a mechanism which may involve the nitric oxidergic pathway. [source]


    Suppression of Heavy Drinking and Alcohol Seeking by a Selective ALDH-2 Inhibitor

    ALCOHOLISM, Issue 11 2009
    Maria P. Arolfo
    Background:, Inherited human aldehyde dehydrogenase 2 (ALDH-2) deficiency reduces the risk for alcoholism. Kudzu plants and extracts have been used for 1,000 years in traditional Chinese medicine to treat alcoholism. Kudzu contains daidzin, which inhibits ALDH-2 and suppresses heavy drinking in rodents. Decreased drinking due to ALDH-2 inhibition is attributed to aversive properties of acetaldehyde accumulated during alcohol consumption. However, daidzin can reduce drinking in some rodents without necessarily increasing acetaldehyde. Therefore, a selective ALDH-2 inhibitor might affect other metabolic factors involved in regulating drinking. Methods:, Aldehyde dehydrogenase 2 inhibitors were synthesized based on the co-crystal structure of ALDH-2 and daidzin. We tested the efficacy of a highly selective reversible ALDH-2 inhibitor, CVT-10216, in models of moderate and high alcohol drinking rats. We studied 2-bottle choice and deprivation-induced drinking paradigms in Fawn Hooded (FH) rats, operant self-administration in Long Evans (LE), FH, and inbred P (iP) rats and in cue-induced reinstatement in iP rats. We also assayed blood acetaldehyde levels as well as dopamine (DA) release in the nucleus accumbens (NAc) and tested possible rewarding/aversive effects of the inhibitor in a conditioned place preference (CPP) paradigm. Results:, CVT-10216 increases acetaldehyde after alcohol gavage and inhibits 2-bottle choice alcohol intake in heavy drinking rodents, including deprivation-induced drinking. Moreover, CVT-10216 also prevents operant self-administration and eliminates cue-induced reinstatement of alcohol seeking even when alcohol is not available (i.e., no acetaldehyde). Alcohol stimulates DA release in the NAc, which is thought to contribute to increased drinking and relapse in alcoholism. CVT-10216 prevents alcohol-induced increases in NAc DA without changing basal levels. CVT-10216 does not show rewarding or aversive properties in the CPP paradigm at therapeutic doses. Conclusion:, Our findings suggest that selective reversible ALDH-2 inhibitors may have therapeutic potential to reduce excessive drinking and to suppress relapse in abstinent alcoholics. [source]


    Decreased Sensitivity to Ethanol Reward in Adolescent Mice as Measured by Conditioned Place Preference

    ALCOHOLISM, Issue 7 2009
    Shelly D. Dickinson
    Background:, Many preclinical studies have demonstrated age-related differential sensitivity to various effects of ethanol between adolescent and adult animals. However, published data addressing possible differences in ethanol's motivational effects are sparse, particularly in mice. The present study examined age-related differences in the conditioned rewarding effects of ethanol in DBA/2J mice. Methods:, In the first experiment an unbiased place conditioning procedure was used to determine the rewarding effects of 2 g/kg ethanol in adult and adolescent DBA/2J mice. In a subsequent place conditioning experiment, the effects of 2 and 4 g/kg were assessed in adolescent mice. Results:, Adolescents demonstrated a place preference with the high dose of 4 g/kg but not with a more moderate dose of 2 g/kg. In contrast, 2 g/kg was sufficient to produce place preference in adult mice. Conclusions:, Adolescents are less sensitive than adults to the rewarding effects of ethanol but can experience reward with high doses. These results extend the current literature on ethanol's effects in adolescent animals. [source]


    GDNF is an Endogenous Negative Regulator of Ethanol-Mediated Reward and of Ethanol Consumption After a Period of Abstinence

    ALCOHOLISM, Issue 6 2009
    Sebastien Carnicella
    Background:, We previously found that activation of the glial cell line-derived neurotrophic factor (GDNF) pathway in the ventral tegmental area (VTA) reduces ethanol-drinking behaviors. In this study, we set out to assess the contribution of endogenous GDNF or its receptor GFR,1 to the regulation of ethanol-related behaviors. Methods:, GDNF and GFR,1 heterozygote mice (HET) and their wild-type littermate controls (WT) were used for the studies. Ethanol-induced hyperlocomotion, sensitization, and conditioned place preference (CPP), as well as ethanol consumption before and after a period of abstinence were evaluated. Blood ethanol concentration (BEC) was also measured. Results:, We observed no differences between the GDNF HET and WT mice in the level of locomotor activity or in sensitization to ethanol-induced hyperlocomotion after systemic injection of a nonhypnotic dose of ethanol and in BEC. However, GDNF and GFR,1 mice exhibited increased place preference to ethanol as compared with their WT littermates. The levels of voluntary ethanol or quinine consumption were similar in the GDNF HET and WT mice, however, a small but significant increase in saccharin intake was observed in the GDNF HET mice. No changes were detected in voluntary ethanol, saccharin or quinine consumption of GFR,1 HET mice as compared with their WT littermates. Interestingly, however, both the GDNF and GFR,1 HET mice consumed much larger quantities of ethanol after a period of abstinence from ethanol as compared with their WT littermates. Furthermore, the increase in ethanol consumption after abstinence was found to be specific for ethanol as similar levels of saccharin intake were measured in the GDNF and GFR,1 HET and WT mice after abstinence. Conclusions:, Our results suggest that endogenous GDNF negatively regulates the rewarding effect of ethanol and ethanol-drinking behaviors after a period of abstinence. [source]


    Ethanol-Related Behaviors in Serotonin Transporter Knockout Mice

    ALCOHOLISM, Issue 12 2006
    Janel M. Boyce-Rustay
    Background: Increasing evidence supports a role for 5-hydroxytryptamine (5-HT) and the 5-HT transporter (5-HTT) in modulating the neural and behavioral actions of ethanol (EtOH) and other drugs of abuse. Methods: We used a 5-HTT knockout (KO) mouse model to further study this relationship. 5-Hydroxytryptamine transporter KO mice were tested for the sedative/hypnotic, hypothermia-inducing, motor-incoordinating (via accelerating rotarod), and depression-related (via tail suspension test) effects of acute EtOH administration. Reward-related effects of EtOH were assessed in 5-HTT KO mice using the conditioned place preference (CPP) paradigm. 5-Hydroxytryptamine transporter KO mice were tested for voluntary consumption of EtOH in a modified 2-bottle choice test that measured the temporal organization of drinking over the circadian cycle via "lickometers." Results: Replicating previous findings, 5-HTT KO mice exhibited significantly increased sensitivity to EtOH-induced sedation/hypnosis relative to wild-type controls. Additionally, 5-HTT KO mice showed motor-coordination deficits at baseline and in response to EtOH. Hypothermic, pro-depressive,like, and reward-related effects of EtOH were no different across genotypes. Gross EtOH consumption was modestly reduced in 5-HTT KO mice, due to significantly lesser consumption during the peak period of drinking in the early dark phase. Conclusions: Data extend the finding that loss of 5-HTT gene function alters certain neural and behavioral effects of EtOH, with implications for better understanding the pathophysiology and treatment of alcoholism. [source]


    Helplessness in the Tail Suspension Test Is Associated with an Increase in Ethanol Intake and Its Rewarding Effect in Female Mice

    ALCOHOLISM, Issue 3 2005
    Yann Pelloux
    Background: Depression is frequently observed in drug abusers. However, depression may be a primary factor of predisposition to drug abuse or a consequence of drug abuse. The aim of this study was to analyze the influence of a preexisting depressive-like state/helplessness on subsequent alcohol responsiveness in mice. Methods: Male and female CD1 mice were selected according to their immobility time in the tail suspension test, and only mice with "high immobility" and "low immobility" time were retained. Using a two-bottle free-choice paradigm, these mice were given continuous access to tap water or solutions of ethanol (3,20% v/v), quinine (12.5,50 mg/liter), or sucrose (1,4% w/v). In female mice, rewarding and aversive effects of ethanol (1.5 and 3 g/kg, intraperitoneally) were also investigated using the conditioned place preference and the conditioned taste aversion paradigms. Results: Female mice were more immobile and drank more ethanol than male mice. No striking sex difference was observed in quinine consumption. Sucrose intake was higher in female than in male mice, whatever the solution concentration. At the 4% concentrated solution, a sucrose-induced increase in daily fluid intake was observed only in female mice. Female mice with high immobility time (HI) consumed more ethanol at the highest concentration than female mice with low immobility time (LI), whereas no difference was observed between HI and LI male mice. Moreover, whereas LI female mice failed to express place conditioning induced by the 3-g/kg dose of ethanol, HI female mice were strongly responsive to the rewarding effect of this high ethanol dose. Ethanol dose-dependently induced a conditioned taste aversion with a similar magnitude in both LI and HI female mice. Conclusions: The findings indicate that female CD1 mice tend to drink greater amounts of ethanol or sucrose solutions than male CD1 mice, suggesting that female mice may be a better model of excessive alcohol intake. Furthermore, no relationship was found between immobility scores and ethanol consumption in male mice. On the contrary, within female mice, HI mice consumed higher amounts of ethanol than LI mice probably because they experienced greater rewarding effects of ethanol. The present results support the hypothesis that depressive-like responses may predispose to ethanol abuse in female mice. [source]


    Dopamine D2 Receptor Binding, Drd2 Expression and the Number of Dopamine Neurons in the BXD Recombinant Inbred Series: Genetic Relationships to Alcohol and Other Drug Associated Phenotypes

    ALCOHOLISM, Issue 1 2003
    Robert Hitzemann
    Background: It has not been established to what extent the natural variation in dopamine systems contribute to the variation in ethanol response. The current study addresses this issue by measuring D2 dopamine (DA) receptor binding, the expression of Drd2, the number of midbrain DA neurons in the BXD recombinant inbred (RI) series and then compares these strain means with those previously reported for a variety of ethanol and other drug-related phenotypes. Methods: Data were collected for 21 to 23 of the BXD RI strains and the parental strains. D2 DA receptor autoradiography was performed using 125I-epidepride as the ligand [Kanes S, Dains K, Cipp L, Gatley J, Hitzemann B, Rasmussen E, Sanderson S, Silverman S, Hitzemann R (1996) Mapping the genes for haloperidol-induced catalepsy. J Pharmacol Exp Ther 277:1016,1025]. Drd2 expression was measured using the Affymetrix oligoarray system. Immunocytochemical techniques were used to determine the number of midbrain DA neurons [Hitzemann B, Dains K, Hitzemann R (1994) Further studies on the relationship between dopamine cell density and haloperidol response. J Pharmacol Exp Ther 271:969,976]. Results and Conclusions: The range of difference in receptor binding for the RI strains was approximately 2-fold in all regions examined, the core, the shell of the nucleus accumbens (NAc) and the dorsomedial caudate-putamen (CPu); heritability in all regions was moderate,(h 2,0.35). Drd2 expression in forebrain samples from the RI and parental strains ranged 1.5- to 2-fold and h2 was moderate,0.47. Variation in the number of tyrosine hydroxylase (TH) positive neurons was moderate, 41% and 26% and h2 was low,0.19 and 0.15 for the ventral tegmental area (VTA) and substantia nigra compacta (SNc), respectively. Significant correlations were found between D2 DA receptor binding and the low dose (1.33 g/kg) ethanol stimulant response. (p < 0.002) and between Drd2 expression and conditioned place preference (CPP) (p < 0.0005). No significant correlations were detected between ethanol preference and either receptor binding or Drd2 expression; however, a significant correlation was found between preference and Ncam expression. Ncam is approximately 0.2 Mb from Drd2. Overall, the data suggest ethanol preference and CPP are associated with the expression of Drd2 or closely linked genetic loci. [source]


    Dopaminergic Neurons in the Ventral Tegmental Area of C57BL/6J and DBA/2J Mice Differ in Sensitivity to Ethanol Excitation

    ALCOHOLISM, Issue 7 2000
    Mark S. Brodie
    Background: The mesolimbic dopamine pathway that originates in the ventral tegmental area (VTA) is important for the rewarding effects of ethanol. Ethanol has been shown to excite dopaminergic neurons of the VTA, both in vivo and in vitro, in rats. Behavioral differences in the rewarding effects of ethanol have been observed between C57BL/6J and DBA/2J mice. The present electrophysiological study examined the effect of ethanol on individual dopaminergic VTA neurons from these two inbred mouse strains. Methods: Extracellular single unit recordings of spontaneous action potentials were made from dopaminergic VTA neurons in brain slices from either C57BL/6J or DBA/2J mice. Ethanol (10 to 160 mM) was administered in the superfusate and the mean change in firing rate produced by ethanol was measured. Results: There was no significant difference in basal spontaneous firing rate of dopaminergic VTA neurons between these two mouse strains. Ethanol caused a concentration-dependent increase in the firing rate of neurons from both mouse strains. Ethanol excited dopaminergic VTA neurons from DBA/2J mice more potently than those from C57BL/6J mice. Conclusions: The difference in sensitivity to ethanol excitation of dopaminergic VTA neurons in C57BL/6J and DBA/2J mice may contribute to differences in their behavioral response to ethanol. The fact that a given concentration of ethanol causes greater excitation of dopaminergic VTA (reward) neurons in DBA/2J mice than in C57BL/6J mice could explain why DBA/2J mice show much stronger place preference conditioning with ethanol. The higher voluntary intake of ethanol by C57BL/6J mice may be partly due to the insensitivity of their dopaminergic VTA neurons that requires them to drink a lot of ethanol to achieve sufficient excitation of reward neurons, whereas DBA/2J mice avoid oral ingestion of ethanol, despite its rewarding effect, because of their aversion to its taste. [source]


    Behavioural and biochemical evidence for interactions between ,9-tetrahydrocannabinol and nicotine

    BRITISH JOURNAL OF PHARMACOLOGY, Issue 2 2002
    Emmanuel Valjent
    Behavioural and pharmacological effects of ,9-tetrahydrocannabinol (THC) and nicotine are well known. However, the possible interactions between these two drugs of abuse remain unclear in spite of the current association of cannabis and tobacco in humans. The present study was designed to analyse the consequences of nicotine administration on THC-induced acute behavioural and biochemical responses, tolerance and physical dependence. Nicotine strongly facilitated hypothermia, antinociception and hypolocomotion induced by the acute administration of THC. Furthermore, the co-administration of sub-threshold doses of THC and nicotine produced an anxiolytic-like response in the light,dark box and in the open-field test as well as a significant conditioned place preference. Animals co-treated with nicotine and THC displayed an attenuation in THC tolerance and an enhancement in the somatic expression of cannabinoid antagonist-precipitated THC withdrawal. THC and nicotine administration induced c-Fos expression in several brain structures. Co-administration of both compounds enhanced c-Fos expression in the shell of the nucleus accumbens, central and basolateral nucleus of the amygdala, dorso-lateral bed nucleus of the stria terminalis, cingular and piriform cortex, and paraventricular nucleus of the hypothalamus. These results clearly demonstrate the existence of a functional interaction between THC and nicotine. The facilitation of THC-induced acute pharmacological and biochemical responses, tolerance and physical dependence by nicotine could play an important role in the development of addictive processes. British Journal of Pharmacology (2002) 135, 564,578; doi:10.1038/sj.bjp.0704479 [source]


    Role of Dopamine D1 Receptors and Extracellular Signal Regulated Kinase in the Motivational Properties of Acetaldehyde as Assessed by Place Preference Conditioning

    ALCOHOLISM, Issue 4 2010
    Liliana Spina
    Background:, The role of dopamine D1 receptors and Extracellular signal Regulated Kinase (ERK) in the motivational properties of drugs can be studied by place-conditioning. Recent advances have shown that the motivational properties of ethanol, determined by place-conditioning, are mediated by its metabolic conversion into acetaldehyde. To date, the role of D1 receptors and ERK activation in acetaldehyde-elicited place preference has not been determined. The aim of this study was to assess the role of D1 receptors blockade and MEK inhibition in the acquisition of acetaldehyde-elicited conditioned place preference. Methods:, Male Sprague,Dawley rats were subjected to repeated pairings with 1 compartment of the conditioning apparatus immediately following acetaldehyde (20 mg/kg i.g.) or ethanol (1 g/kg i.g.) administration. The D1 receptor antagonist, SCH 39166 (50 ,g/kg s.c.), was administered 10 minutes before acetaldehyde or ethanol administration. In order to study the role of activated ERK in the acetaldehyde-elicited place preference, rats were administered the MEK inhibitor, PD98059 (1, 30, and 90 ,g i.c.v.), 10 or 30 minutes before acetaldehyde. To verify the specificity of these effects, we also studied whether PD98059 pretreatment could affect morphine (1 mg/kg s.c.)-elicited place preference. Results:, Both acetaldehyde and ethanol elicited significant place preferences and these were prevented by pretreatment with SCH 39166. In addition, pretreatment with PD98059, dose (30 and 90 but not 1 ,g i.c.v.) and time (10 but not 30 minutes before) dependently, prevented the acquisition of acetaldehyde- and significantly reduced the acquisition of morphine-elicited conditioned place preference. Conclusions:, These results confirm that acetaldehyde and ethanol elicit conditioned place preference and demonstrate that D1 receptors are critically involved in these effects. Furthermore, the finding that PD98059 prevents the acquisition of acetaldehyde-elicited conditioned place preference highlights the importance of the D1 receptor,ERK pathway in its motivational effects. [source]