Platelet-derived Growth Factor Receptor (platelet-derived + growth_factor_receptor)

Distribution by Scientific Domains


Selected Abstracts


Immunohistochemical analysis of receptor tyrosine kinase signal transduction activity in chordoma

NEUROPATHOLOGY & APPLIED NEUROBIOLOGY, Issue 1 2008
J. H. Fasig
Aims: Currently, there are no effective chemotherapeutic protocols for chordoma. Reports of receptor tyrosine kinase (RTK) expression in chordoma suggest that these tumours may respond to kinase inhibitor therapy. However, RTK signalling activity has not been extensively investigated in chordoma. Methods: A tissue microarray containing 21 cases of chordoma was analysed for expression of a number of proteins involved in signal transduction from RTKs by immunohistochemistry. Results: Platelet-derived growth factor receptor-,, epidermal growth factor receptor (EGFR), KIT and HER2 were detected in 100%, 67%, 33% and 0% of cases, respectively. Platelet-derived growth factor receptor-, staining was of moderate-to-strong intensity in 20 of 21 cases. In contrast, KIT immunoreactivity was weak and focal in each of the seven positive cases. Total EGFR staining was variable; weak staining for phosphorylated EGFR was detected in nine cases. Phosphorylated isoforms of p44/42 mitogen-activated protein kinase, Akt and STAT3, indicative of tyrosine kinase activity, were detected in 86%, 76% and 67% of cases, respectively. Conclusions: Chordomas commonly express RTKs and activated signal transduction molecules. Although there were no statistically significant correlations between the expression of any of the markers studied and disease-free survival or tumour location, the results nonetheless indicate that chordomas may respond to RTK inhibitors or modulators of other downstream signalling molecules. [source]


Platelet-derived growth factor receptors expressed in response to injury of differentiated vascular smooth muscle in vitro: effects on Ca2+ and growth signals

ACTA PHYSIOLOGICA, Issue 2 2001
A. Lindqvist
Vascular smooth muscle cells (VSMCs) in the intact vascular wall are differentiated for contraction, whereas the response to vascular injury involves transition towards a synthetic phenotype, with increased tendency for proliferation. Platelet-derived growth factor (PDGF) is thought to be important for this process. We investigated expression and functional coupling of PDGF receptors (PDGFRs) , and , in rat tail arterial rings kept in organ culture, in order to capture early events in the phenotypic transition. In freshly dissected rings no PDGFR immunoreactivity was found in medial VSMCs, whereas PDGFR , was detected in nerve fibres. After organ culture for 1,4 days PDGFR , and , as well as phospholipase C,2 (PLC,2), known to couple to PDGFR, were expressed in VSMCs within 100 ,m of the cut ends. Calponin, a marker for the contractile phenotype, was decreased near the injured area, suggesting that cells were in transition towards synthetic phenotype. In these cells, which showed functional Ca2+ -release from the sarcoplasmic reticulum, PDGF-AB (100 ng mL,1) had no effect on [Ca2+]i, whereas cultured VSMCs obtained from explants of rat tail arterial rings responded to PDGF-AB with an increase in [Ca2+]i. However, PDGFR within the cultured rings coupled to growth signalling pathways, as PDGF-AB caused a tyrphostin AG1295-sensitive activation of extracellular signal-regulated kinases 1 and 2 and of [3H]-thymidine incorporation. Thus, early expression of PDGFR in VSMC adjacent to sites of vascular injury coincides with signs of dedifferentiation. These receptors couple to growth signalling, but do not activate intracellular Ca2+ release. [source]


A Bayesian hierarchical mixture model for platelet-derived growth factor receptor phosphorylation to improve estimation of progression-free survival in prostate cancer

JOURNAL OF THE ROYAL STATISTICAL SOCIETY: SERIES C (APPLIED STATISTICS), Issue 1 2010
Satoshi Morita
Summary., Advances in understanding the biological underpinnings of many cancers have led increasingly to the use of molecularly targeted anticancer therapies. Because the platelet-derived growth factor receptor (PDGFR) has been implicated in the progression of prostate cancer bone metastases, it is of great interest to examine possible relationships between PDGFR inhibition and therapeutic outcomes. We analyse the association between change in activated PDGFR (phosphorylated PDGFR) and progression-free survival time based on large within-patient samples of cell-specific phosphorylated PDGFR values taken before and after treatment from each of 88 prostate cancer patients. To utilize these paired samples as covariate data in a regression model for progression-free survival time, and be cause the phosphorylated PDGFR distributions are bimodal, we first employ a Bayesian hierarchical mixture model to obtain a deconvolution of the pretreatment and post-treatment within-patient phosphorylated PDGFR distributions. We evaluate fits of the mixture model and a non-mixture model that ignores the bimodality by using a supnorm metric to compare the empirical distribution of each phosphorylated PDGFR data set with the corresponding fitted distribution under each model. Our results show that first using the mixture model to account for the bimodality of the within-patient phosphorylated PDGFR distributions, and then using the posterior within-patient component mean changes in phosphorylated PDGFR so obtained as covariates in the regression model for progression-free survival time, provides an improved estimation. [source]


RNA interference targeting the platelet-derived growth factor receptor , subunit ameliorates experimental hepatic fibrosis in rats

LIVER INTERNATIONAL, Issue 10 2008
Si-Wen Chen
Abstract Background/Aims: Platelet-derived growth factor (PDGF) is the strongest stimulator of the proliferation of hepatic stellate cells (HSCs). PDGF receptor , subunit (PDGFR-,) is acquired on HSCs proliferation induced by PDGF. In this study, we aim to investigate the effect of PDGFR-, small interference RNA (siRNA) on experimental hepatic fibrosis. Methods: We constructed a PDGFR-, siRNA expression plasmid and investigated its effect on the activation of HSCs. Bromodeoxyuridine incorporation was performed to investigate the effect of PDGFR-, siRNA on HSCs proliferation. A hydrodynamics-based transfection method was used to deliver PDGFR-, siRNA to rats with hepatic fibrosis. The distribution of transgenes in the liver was observed by immunofluorescence. The antifibrogenic effect of PDGFR-, siRNA was investigated pathologically. Results: Platelet-derived growth factor receptor-, subunit siRNA could significantly downregulate PDGFR-, expression, suppress HSCs activation, block the mitogen-activated protein kinase signalling pathway and inhibit HSCs proliferation in vitro. PDGFR-, siRNA expression plasmid could be delivered into activated HSCs by the hydrodynamics-based transfection method, and remarkably improve the liver function of the rat model induced by dimethylnitrosamine and bile duct ligation. Furthermore, the progression of fibrosis in the liver was significantly suppressed by PDGFR-, siRNA in both animal models. Conclusions: Platelet-derived growth factor receptor-, subunit siRNA may be presented as an effective antifibrogenic gene therapeutic method for hepatic fibrosis. [source]


Pathology of soft-tissue tumors: Daily diagnosis, molecular cytogenetics and experimental approach

PATHOLOGY INTERNATIONAL, Issue 8 2009
Hiroshi Iwasaki
This article reviews problems in diagnostic pathology and molecular cytogenetics of soft-tissue tumors. Also discussed are the origin of soft-tissue sarcomas and the molecular basis of effective target therapy for sarcomas. Molecular cytogenetic analysis of tumor-specific chromosomal translocations and associated fusion gene transcripts offers a useful adjunct to the diagnosis of soft-tissue tumors, but recent studies have indicated a growing number of fusion gene variations in each tumor type. In pleomorphic sarcoma/malignant fibrous histiocytoma, the alternative lengthening of telomeres (ALT) mechanism may result in formation of anaphase bridges and marked nuclear pleomorphism. The histogenesis of soft-tissue sarcomas has been a matter of controversy. In the present experimental model using s.c. injection of 3-methylcholanthrene in C57BL/6 mice pretreated with bone marrow-transplantation from green fluorescent protein (GFP)-positive green mice, the bone marrow-derived mesenchymal stem cells as well as the tissue-resident mesenchymal cells in the peripheral soft tissues are possible originators of sarcomagenesis. Little is known about a molecular basis of target therapy for sarcomas. Platelet-derived growth factor-BB (PDGF-BB) enhances the invasive activity of malignant peripheral nerve sheath tumor (MPNST) cells through platelet-derived growth factor receptor (PDGFR) phosphorylation, whereas imatinib mesylate inhibited such activity, suggesting that targeting PDGFR-, may result in the establishment of novel treatment for MPNST. In addition, emmprin is a transmembrane glycoprotein on tumor cells that stimulates peritumoral fibroblasts to produce matrix metalloproteinases (MMP), playing a crucial role in tumor progression, invasion and metastasis. The MMP upregulation mechanism mediated by tumor-associated emmprin may be a potentially useful target in anti-tumor invasion therapy for sarcomas. [source]


Pathology of gastrointestinal stromal tumors

PATHOLOGY INTERNATIONAL, Issue 1 2006
Seiichi Hirota
Gastrointestinal stromal tumors (GIST) are the most common mesenchymal tumors in the gastrointestinal tract. It was found that most GIST expressed KIT, a receptor tyrosine kinase encoded by protooncogene c- kit. In normal gastrointestinal wall, KIT is expressed by interstitial cells of Cajal (ICC), which are a pacemaker for autonomous gastrointestinal movement. Because both GIST and ICC are double-positive for KIT and CD34, and because familial and multiple GIST appear to develop from diffuse hyperplasia of ICC, GIST are considered to originate from ICC or their precursor cells. It was also found that approximately 90% of the sporadic GIST have somatic gain-of-function mutations of the c- kit gene, and that the patients with familial and multiple GIST have germline gain-of-function mutations of the c- kit gene. These facts strongly suggest that the c- kit gene mutations are a cause of GIST. Approximately half of the sporadic GIST without c- kit gene mutations were demonstrated to have gain-of-function mutations in platelet-derived growth factor receptor-, (PDGFRA) gene that encodes another receptor tyrosine kinase. Because KIT is immunohistochemically negative in a minority of GIST, especially in PDGFRA gene mutation-harboring GIST, mutational analyses of c- kit and PDGFRA genes may be required to diagnose such GIST definitely. Imatinib mesylate was developed as a selective tyrosine kinase inhibitor. It inhibits constitutive activation of mutated KIT and PDGFRA, and is now being used for KIT-positive metastatic or unresectable GIST as a molecular target drug. Confirmation of KIT expression by immunohistochemistry is necessary for application of the drug. The effect of imatinib mesylate is different in various types of c- kit and PDGFRA gene mutations, and the secondary resistance against imatinib mesylate is often acquired by the second mutation of the identical genes. Mutational analyses of c- kit and PDGFRA genes are also significant for prediction of effectiveness of drugs including newly developed agents. [source]


Comparison of binding energies of SrcSH2-phosphotyrosyl peptides with structure-based prediction using surface area based empirical parameterization

PROTEIN SCIENCE, Issue 10 2000
Denise A. Henriques
Abstract The prediction of binding energies from the three-dimensional (3D) structure of a protein,ligand complex is an important goal of biophysics and structural biology. Here, we critically assess the use of empirical, solvent-accessible surface area-based calculations for the prediction of the binding of Src-SH2 domain with a series of tyrosyl phosphopeptides based on the high-affinity ligand from the hamster middle T antigen (hmT), where the residue in the pY+3 position has been changed. Two other peptides based on the C-terminal regulatory site of the Src protein and the platelet-derived growth factor receptor (PDGFR) are also investigated. Here, we take into account the effects of proton linkage on binding, and test five different surface area-based models that include different treatments for the contributions to conformational change and protein solvation. These differences relate to the treatment of conformational flexibility in the peptide ligand and the inclusion of proximal ordered solvent molecules in the surface area calculations. This allowed the calculation of a range of thermodynamic state functions (,Cp, ,S, ,H, and ,G) directly from structure. Comparison with the experimentally derived data shows little agreement for the interaction of SrcSH2 domain and the range of tyrosyl phosphopeptides. Furthermore, the adoption of the different models to treat conformational change and solvation has a dramatic effect on the calculated thermodynamic functions, making the predicted binding energies highly model dependent. While empirical, solvent-accessible surface area based calculations are becoming widely adopted to interpret thermodynamic data, this study highlights potential problems with application and interpretation of this type of approach. There is undoubtedly some agreement between predicted and experimentally determined thermodynamic parameters; however, the tolerance of this approach is not sufficient to make it ubiquitously applicable. [source]


Lack of detection of agonist activity by antibodies to platelet-derived growth factor receptor , in a subset of normal and systemic sclerosis patient sera

ARTHRITIS & RHEUMATISM, Issue 4 2009
Nick Loizos
Objective To investigate whether agonist anti,platelet-derived growth factor receptor , (anti-PDGFR,) antibodies are present in the serum of patients with systemic sclerosis (SSc; scleroderma). Methods Sera were obtained from healthy subjects and scleroderma patients. An electrochemiluminescence binding assay was performed for detection of serum autoantibodies to PDGFR,, PDGFR,, epidermal growth factor receptor (EGFR), and colony-stimulating factor receptor 1 (CSFR1). Serum immunoglobulin was purified by protein A/G chromatography. To assess Ig agonist activity, PDGFR,-expressing cells were incubated with pure Ig and the level of receptor phosphorylation determined in an enzyme-linked immunoassay, as well as by Western blotting. Ig agonist activity was also assessed in a mitogenic assay and by MAP kinase activation in a PDGFR,-expressing cell line. Results Sera from 34.3% of the healthy subjects and 32.7% of the SSc patients contained detectable autoantibodies to PDGFR, and PDGFR,, but not EGFR or CSFR1. Purified Ig from these sera was shown to retain PDGFR binding activity and, at 200-1,000 ,g/ml, exhibited no agonist activity in a cell-based PDGFR, phosphorylation assay and did not stimulate a mitogenic response or MAP kinase activation in a PDGFR,-expressing cell line. Two purified Ig samples that were unable to bind PDGFR, did exhibit binding activity to a nonglycosylated form of PDGFR,. Conclusion Although approximately one-third of sera from scleroderma patients contained detectable autoantibodies to PDGFR, these antibodies were not specific to scleroderma, since they were also detected in a similar percentage of samples from normal subjects. PDGFR, agonist activity was not demonstrated when purified Ig from these sera was tested in cell-based assays. [source]


A sodium dodecyl sulfate,polyacrylamide gel electrophoresis,liquid chromatography tandem mass spectrometry analysis of bovine cartilage tissue response to mechanical compression injury and the inflammatory cytokines tumor necrosis factor , and interleukin-1,

ARTHRITIS & RHEUMATISM, Issue 2 2008
Anna L. Stevens
Objective To compare the response of chondrocytes and cartilage matrix to injurious mechanical compression and treatment with interleukin-1, (IL-1,) and tumor necrosis factor , (TNF,), by characterizing proteins lost to the medium from cartilage explant culture. Methods Cartilage explants from young bovine stifle joints were treated with 10 ng/ml of IL-1, or 100 ng/ml of TNF, or were subjected to uniaxial, radially-unconfined injurious compression (50% strain; 100%/second strain rate) and were then cultured for 5 days. Pooled media were subjected to gel-based separation (sodium dodecyl sulfate,polyacrylamide gel electrophoresis) and analysis by liquid chromatography tandem mass spectrometry, and the data were analyzed by Spectrum Mill proteomics software, focusing on protein identification, expression levels, and matrix protein proteolysis. Results More than 250 proteins were detected, including extracellular matrix (ECM) structural proteins, pericellular matrix proteins important in cell,cell interactions, and novel cartilage proteins CD109, platelet-derived growth factor receptor,like, angiopoietin-like 7, and adipocyte enhancer binding protein 1. IL-1, and TNF, caused increased release of chitinase 3,like protein 1 (CHI3L1), CHI3L2, complement factor B, matrix metalloproteinase 3, ECM-1, haptoglobin, serum amyloid A3, and clusterin. Injurious compression caused the release of intracellular proteins, including Grp58, Grp78, ,4-actinin, pyruvate kinase, and vimentin. Injurious compression also caused increased release and evidence of proteolysis of type VI collagen subunits, cartilage oligomeric matrix protein, and fibronectin. Conclusion Overload compression injury caused a loss of cartilage integrity, including matrix damage and cell membrane disruption, which likely occurred through strain-induced mechanical disruption of cells and matrix. IL-1, and TNF, caused the release of proteins associated with an innate immune and stress response by the chondrocytes, which may play a role in host defense against pathogens or may protect cells against stress-induced damage. [source]


Analysis of vascular gene expression in arthritic synovium by laser-mediated microdissection

ARTHRITIS & RHEUMATISM, Issue 4 2007
Atsushi Hashimoto
Objective In rheumatoid arthritis (RA), formation of new blood vessels is necessary to meet the nutritional and oxygen requirements of actively proliferating synovial tissue. The aim of this study was to analyze the specific synovial vascular expression profiles of several angiogenesis-related genes as well as CD82 in RA compared with osteoarthritis (OA), using laser-mediated microdissection (LMM). Methods LMM and subsequent real-time polymerase chain reaction were used in combination with immunohistochemical analysis for area-specific analysis of messenger RNA (mRNA) and protein expression of vascular endothelial growth factor (VEGF), VEGF receptor 1 (VEGFR-1), VEGFR-2, hypoxia-inducible factor 1, (HIF-1,), HIF-2,, platelet-derived growth factor receptor , (PDGFR,), PDGFR,, inhibitor of DNA binding/differentiation 2 (Id2), and CD82 in RA and OA synovial microvasculature and synovial lining. Results Expression of Id2 mRNA was significantly lower in RA synovial vessels compared with OA synovial vessels (P = 0.0011), whereas expression of VEGFR-1 was significantly higher in RA (P = 0.0433). No differences were observed for the other parameters. At the protein level, no statistically significant differences were observed for any parameter, although Id2 levels were 2.5-fold lower in RA (P = 0.0952). However, the number of synovial blood vessels and the number of VEGFR-2,expressing blood vessels were significantly higher in RA compared with OA. Conclusion Our results underscore the importance of area-specific gene expression analysis in studying the pathogenesis of RA and support LMM as a robust tool for this purpose. Of note, our results indicate that previously described differences between RA and OA in the expression of angiogenic molecules are attributable to higher total numbers of synovial and vascular cells expressing these molecules in RA rather than higher expression levels in the individual cells. [source]


Fusion of PDGFRB to two distinct loci at 3p21 and a third at 12q13 in imatinib-responsive myeloproliferative neoplasms

BRITISH JOURNAL OF HAEMATOLOGY, Issue 2 2010
Claire Hidalgo-Curtis
Summary We identified four patients who presented with BCR-ABL1 negative myeloproliferative neoplasms and cytogenetically visible abnormalities of chromosome band 5q31-35. Fluorescence in situ hybridization indicated that the platelet-derived growth factor receptor , gene (PDGFRB) was disrupted in all four cases and 5, rapid amplification of cDNA ends identified in-frame mRNA fusions between PDGFRB and WDR48 (3p21), GOLGA4 (3p21) and BIN2 (12q13). Strikingly, all three genes encode proteins involving intracellular trafficking. Imatinib, a known inhibitor of PDGFR,, selectively blocked the growth of t(3;5) myeloid colonies and produced clinically significant responses in all patients. We conclude that PDGFRB fuses to diverse partner genes in atypical myeloproliferative neoplasms (MPNs). Although very rare, identification of these fusions is critical for proper management of affected individuals. [source]


Pleomorphic phenotypes of gastrointestinal stromal tumors at metastatic sites with or without imatinib treatment

CANCER SCIENCE, Issue 5 2010
Kazuha Sakamoto
Secondary resistance of gastrointestinal stromal tumors (GISTs) to tyrosine kinase inhibitors occurs after several years' administration. However, the mechanism of resistance has not been fully clarified. In this study, we analyzed the genotypes and the histologic and immunohistochemical phenotypes of metastatic GISTs with and without imatinib treatment, and clarified the pleomorphic nature of metastatic GISTs. We examined 31 autopsy cases in which the patients died of multiple metastases of GISTs, and two surgically resected specimens with and without imatinib treatment. A total of 152 primary and metastatic lesions in 33 cases of GISTs were examined for histologic and immunohistochemical expression of KIT and CD34. We analyzed the expression of other receptor tyrosine kinases (RTKs) in KIT-negative lesions, including human EGFR-related 2 (HER2), epidermal growth factor receptor (EGFR), hepatocyte growth factor receptor (MET), platelet-derived growth factor receptor-, (PDGFRA), and platelet-derived growth factor receptor-, (PDGFRB). Fifteen lesions in seven cases (9.9%) lacked KIT expression, and 74 (49%) in 22 cases lacked CD34 expression. Eight KIT-negative lesions in five cases expressed PDGFRB, one of which also expressed EGFR, and three lesions in one case expressed MET. Results for the other RTKs were negative. Missense point mutations at PDGFRB gene exon 12 were detected in one PDGFRB-positive case. Our results indicate that histomorphology, immunohistochemical phenotypes, and genotypes of metastatic GISTs vary among lesions, even in cases without imatinib treatment. A KIT-independent mechanism, such as activation of other RTKs, might participate in the proliferation of late-stage GISTs and might be a cause of secondary imatinib resistance. (Cancer Sci 2010; 101: 1270,1278) [source]


Immunohistochemical detection of insulin-like growth factors, platelet-derived growth factor, and their receptors in ameloblastic tumors

JOURNAL OF ORAL PATHOLOGY & MEDICINE, Issue 4 2007
H. Kumamoto
Background:, To evaluate the roles of growth factors in oncogenesis and cytodifferentiation of odontogenic tumors, expression of insulin-like growth factors (IGFs), platelet-derived growth factor (PDGF), and their receptors was analyzed in ameloblastic tumors as well as in tooth germs. Methods:, Tissue specimens of 10 tooth germs, 47 ameloblastomas, and five malignant ameloblastic tumors were examined immunohistochemically with the use of antibodies against IGF-I, IGF-II, IGF-I receptor (IGF-IR), PDGF A-chain, PDGF B-chain, PDGF , -receptor, and PDGF , -receptor. Results:, Immunohistochemical reactivity for IGFs, PDGF chains, and their receptors was detected predominantly in odontogenic epithelial cells near the basement membrane in tooth germs and in benign and malignant ameloblastic tumors. The expression levels of IGF-II and PDGF chains were significantly higher in ameloblastic tumors than in tooth germs. Malignant ameloblastic tumors showed higher reactivity for PDGF chains than benign ameloblastomas and higher reactivity for platelet-derived growth factor receptors than tooth germs. The expression levels of PDGF chains were significantly higher in follicular ameloblastomas than in plexiform ameloblastomas. Desmoplastic ameloblastomas showed higher expression of IGFs and IGF-IR when compared with other ameloblastoma subtypes. Conclusion:, Expression of IGFs, PDGF, and their receptors in tooth germs and ameloblastic tumors suggests that these growth factor signals contribute to cell proliferation or survival in both normal and neoplastic odontogenic tissues. Expression of these molecules in odontogenic tissues possibly affects interactions with the bone microenvironment during tooth development and intraosseous progression of ameloblastic tumors. Altered expression of the ligands and receptors in ameloblastic tumors may be involved in oncogenesis, malignant potential, and tumor cell differentiation. [source]


Amplification of genes encoding KIT, PDGFR, and VEGFR2 receptor tyrosine kinases is frequent in glioblastoma multiforme

THE JOURNAL OF PATHOLOGY, Issue 2 2005
Heikki Joensuu
Abstract KIT, platelet-derived growth factor receptors (PDGFRs) and vascular endothelial growth factor receptors (VEGFRs) are important clinical targets for tyrosine kinase inhibitors. The frequency of KIT and VEGFR2 amplification in glioblastomas is not known, and few data are available in any other human tumour type. We investigated 43 primary glioblastomas for KIT, VEGFR2, PDGFRA and EGFR amplification using fluorescence in situ hybridization. KIT was amplified in 47% and VEGFR2 in 39% of the glioblastomas, respectively, and PDGFRA in 29%. Thirty-five (81%) of the tumours had either KIT or EGFR amplification. KIT, PDGFRA and VEGFR2 amplifications were strongly associated (p < 0.0001 for each pairwise comparison), suggesting co-amplification, whereas no significant association was found with EGFR amplification. The four secondary glioblastomas arising from pre-existing lower grade astrocytic tumours investigated had KIT amplification but none had EGFR amplification. No mutations were detected with denaturing high-performance liquid chromatography in KIT exons 9, 11, 13 or 17, PDGFRA exons 12 and 18, or EGFR exons 18, 19 or 21. Glioblastomas with KIT, PDGFR or VEGFR2 amplification were associated with similar outcome to other glioblastomas. We conclude that KIT, PDGFRA and VEGFR2 are commonly amplified in primary glioblastoma and that they may also be amplified in secondary glioblastoma. Amplified kinases may be potential targets for tyrosine kinase inhibitor therapy. Copyright © 2005 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd. [source]