Home About us Contact | |||
Plastic Waste (plastic + waste)
Selected AbstractsPseudozyma jejuensis sp. nov., a novel cutinolytic ustilaginomycetous yeast species that is able to degrade plastic wasteFEMS YEAST RESEARCH, Issue 6 2007Hyuk-Seong Seo Abstract An ustilaginomycetous anamorphic yeast, isolated from orange leaves on Jeju island in South Korea, represents a novel Pseudozyma species according to morphologic and physiologic findings and molecular taxonomic analysis using the D1/D2 domains of the large subunit (26S) rRNA gene and the internally transcribed spacer (ITS) 1+2 regions. The name Pseudozyma jejuensis sp. nov. is proposed for this novel species, with OL71T (=KCTC 17482T=CBS 10454T) as type strain. In the present study, we have also demonstrated that Pseudozyma jejuensis OL71 is capable of producing cutinase and degrading polycaprolactone. These results suggest that Pseudozyma jejuensis or its cutinase may be useful for the biological degradation of plastic waste. [source] Efficient utilization of plastic waste through product design and process adaptation: A case study on stiffness enhancement of beams produced from plastic lumberADVANCES IN POLYMER TECHNOLOGY, Issue 3 2008Cristian Pio Abstract The aim of the present work is the development of a method for structural reinforcement of beams obtained by in-mold extrusion of plastics from solid urban waste. The beams obtained by in-mold extrusion are commonly used for outdoor furniture and structures. The material used for such applications is mainly composed of low-density polyethylene derived from bags and films, with small amounts of high density polyethylene and polypropylene, as well as traces of polyethylene terephthalate. This material is usually referred to as "plastic lumber." Plastic lumber products have a low stiffness, which results in high deflections under flexural loads, particularly under creep loading. In this study, reinforcing rods of high aspect ratio were incorporated into plastic lumber beams in specific positions with respect to the cross section of the beam. The reinforcement of the plastic lumber beams with fine rods is introduced in the typical intrusion process used for the production of unreinforced beams. Glass fiber reinforced pultruded rods were chosen for this purpose from a preliminary evaluation of different materials. Different diameter glass fiber reinforced pultruded rods, including surface-abraded systems to increase the roughness, were used for the reinforcement of plastic lumber beams. The reinforced beams were tested in terms of flexural stiffness, creep resistance, and pullout resistance of the embedded rods. The results obtained from the mechanical tests showed a significant enhancement of flexural stiffness and creep resistance behavior. The performance at higher stress levels was shown to be significantly dependent on the interfacial adhesion between rods and polymer matrix. © 2009 Wiley Periodicals, Inc. Adv Polym Techn 27:133,142, 2008; Published online in Wiley InterScience (www.interscience.wiley.com). DOI 10.1002/adv.20131 [source] High-density polyethylene (HDPE)-degrading potential bacteria from marine ecosystem of Gulf of Mannar, IndiaLETTERS IN APPLIED MICROBIOLOGY, Issue 2 2010V. Balasubramanian Abstract Aims:, Assessment of high-density polyethylene (HDPE)-degrading bacteria isolated from plastic waste dumpsites of Gulf of Mannar. Methods and Results:, Rationally, 15 bacteria (GMB1-GMB15) were isolated by enrichment technique. GMB5 and GMB7 were selected for further studies based on their efficiency to degrade the HDPE and identified as Arthrobacter sp. and Pseudomonas sp., respectively. Assessed weight loss of HDPE after 30 days of incubation was nearly 12% for Arthrobacter sp. and 15% for Pseudomonas sp. The bacterial adhesion to hydrocarbon (BATH) assay showed that the cell surface hydrophobicity of Pseudomonas sp. was higher than Arthrobacter sp. Both fluorescein diacetate hydrolysis and protein content of the biofilm were used to test the viability and protein density of the biomass. Acute peak elevation was observed between 2 and 5 days of inoculation for both bacteria. Fourier transform infrared (FT-IR) spectrum showed that keto carbonyl bond index (KCBI), Ester carbonyl bond index (ECBI) and Vinyl bond index (VBI) were increased indicating changes in functional group(s) and/or side chain modification confirming the biodegradation. Conclusion:, The results pose us to suggest that both Pseudomonas sp. and Arthrobacter sp. were proven efficient to degrade HDPE, albeit the former was more efficacious, yet the ability of latter cannot be neglected. Significance and Impact of the Study:, Recent alarm on ecological threats to marine system is dumping plastic waste in the marine ecosystem and coastal arena by anthropogenic activity. In maintenance phase of the plastic-derived polyethylene waste, the microbial degradation plays a major role; the information accomplished in this work will be the initiating point for the degradation of polyethylene by indigenous bacterial population in the marine ecosystem and provides a novel eco-friendly solution in eco-management. [source] Waste and Virgin LDPE/PET Blends Compatibilized with an Ethylene-Butyl Acrylate-Glycidyl Methacrylate (EBAGMA) Terpolymer, 1MACROMOLECULAR MATERIALS & ENGINEERING, Issue 10 2005Mustapha Kaci Abstract Summary: This work is aimed at studying the morphology and the mechanical properties of blends of low density polyethylene (LDPE) and poly(ethylene terephthalate) (PET) (10, 20, and 30 wt.-% of PET), obtained as both virgin polymers and urban plastic waste, and the effect of a terpolymer of ethylene-butyl acrylate-glycidyl methacrylate (EBAGMA) as a compatibilizer. LDPE and PET are blended in a single screw extruder twice; the first extrusion to homogenize the two components, and the second to improve the compatibilization degree when the EBAGMA terpolymer is applied. Scanning electron microscopy (SEM) analysis shows that the fractured surface of both the virgin polymer and the waste binary blends is characterized by a gross phase segregation morphology that leads to the formation of large PET aggregates (10,50 µm). Furthermore, a sharp decrease in the elongation at break and impact strength is observed, which denotes the brittleness of the binary blends. The addition of the EBAGMA terpolymer to the binary LDPE/PET blends reduces the size of the PET inclusions to 1,5 µm with a finer dispersion, as a result of an improvement of the interfacial adhesion strength between LDPE and PET. Consequently, increases of the tensile properties and impact strength are observed. SEM micrographs of the fracture surface of a waste 70/30 LDPE/PET blend (R30) and of its blend with 15 pph of EBAGMA (R30C). Magnification,×,1,000. [source] Effect of electron beam treatments on degradation kinetics of polylactic acid (PLA) plastic waste under backyard composting conditionsPACKAGING TECHNOLOGY AND SCIENCE, Issue 2 2009L. Fernando Vargas Abstract The effects of electron beam irradiation on backyard composting behaviour of polylactic acid (PLA) polymer were evaluated. Samples (10,mm2 × 0.75,mm) from thermoformed PLA drinking cups were exposed to 10,MeV electron beam irradiation at doses of 0, 72, 144 and 216,kGy. Irradiated PLA samples were placed in heat-sealed, plastic screen and added to organic feedstock in a rotating composter within a computer-controlled environmental chamber for 10 weeks at 35°C. Changes in weight, structural integrity and molecular weight were assessed over time. Results show that irradiation enhanced PLA breakdown. PLA weight decreased by increasing amounts as irradiation dose increased. Sample brittleness increased with irradiation dose and composting time. Finally, PLA molecular weight decreased as irradiation dose and compost time increased. Molecular weight D values for irradiated PLA were found to be about 430,kGy. After 1 week in a typical backyard composter, molecular weight D values increased to about 560,kGy and then fell to about 380,kGy after 2 weeks of composting. Samples irradiated at 216,kGy showed a reduction in weight of 9.4% after 10 weeks of composting, and a reduction of weight-average molecular weight of 93.7% after 6 weeks. Copyright © 2008 John Wiley & Sons, Ltd. [source] NIR, DSC, and FTIR as quantitative methods for compositional analysis of blends of polymers obtained from recycled mixed plastic wastePOLYMER ENGINEERING & SCIENCE, Issue 9 2001Walker Camacho Methods for the determination of the composition of two binary blends in mixtures of recycled polymeric materials were analyzed and compared. Recycled polypropylene/polyethylene (PP/HDPE) and recycled poly(acryl-butadiene-styrene) and polypropylene(ABS/PP) were used to develop and validate the methods. Diffuse reflectance near infrared spectroscopy (NIRS) offers high sensitivity and ease of operation and a possibility to perform multivariate data analysis. In comparison, differential scanning calorimetry (DSC) and Mid-IR, which are commonly used for this purpose require certain sample preparation and are indeed time consuming. In addition, the low sensitivity of these two methods to concentrations lower than 1% wt makes their application in quality control of recycled polymers inappropriate. NIR can be used for estimating the composition of the recyclate on-line in only a few seconds, no sample preparation is required, and high precision is achieved. We obtained a root mean square error of prediction (RMSEP) equal to 0.21% wt in the interval from 0-15% wt of PP in HDPE and a RMSEP equal to 0.91% wt in the interval 0-100%. For blends of PP/ABS a RMSEP of 0.74% wt in the range 0-100% and 0.32% wt in the range 0-15% wt PP was calculated. Most of the variation in the spectral data with respect to the polymer blend composition for all the studied blends were explained by two principal components (PC). The optimal number of factors (PC) was determined by cross-validation analysis. [source] |