Home About us Contact | |||
Plastic Behaviour (plastic + behaviour)
Selected AbstractsFatigue crack initiation life estimation in a steel welded joint by the use of a two-scale damage modelFATIGUE & FRACTURE OF ENGINEERING MATERIALS AND STRUCTURES, Issue 5 2009N. LAUTROU ABSTRACT This work deals with the fatigue behaviour of S355NL steel welded joints classically used in naval structures. The approach suggested here, in order to estimate the fatigue crack initiation life, can be split into two stages. First, stabilized stress,strain cycles are obtained in all points of the welded joint by a finite element analysis, taking constant or variable amplitude loadings into account. This calculation takes account of: base metal elastic,plastic behaviour, variable yield stress based on hardness measurements in various zones of the weld, local geometry at the weld toe and residual stresses if any. Second, if a fast elastic shakedown occurs, a two-scale damage model based on Lemaitre et al.'s work is used as a post-processor in order to estimate the fatigue crack initiation life. Material parameters for this model were identified from two Wöhler curves established for base metal. As a validation, four-point bending fatigue tests were carried out on welded specimens supplied by ,DCNS company'. Two load ratios were considered: 0.1 and 0.3. Residual stress measurements by X-ray diffraction completed this analysis. Comparisons between experimental and calculated fatigue lives are promising for the considered loadings. An exploitation of this method is planned for another welding process. [source] Development of hyperplasticity models for soil mechanicsINTERNATIONAL JOURNAL FOR NUMERICAL AND ANALYTICAL METHODS IN GEOMECHANICS, Issue 3 2006S. Likitlersuang Abstract Hyperplasticity theory was developed by Collins and Houlsby (Proc. Roy. Soc. Lon. A 1997; 453:1975,2001) and Houlsby and Puzrin (Int. J. Plasticity 2000; 16(9):1017,1047). Further research has extended the method to continuous hyperplasticity, in which smooth transitions between elastic and plastic behaviour can be modelled. This paper illustrates a development of a new constitutive model for soils using hyperplasticity theory. The research begins with a simple one-dimensional elasticity model. This is extended in stages to an elasto-plastic model with a continuous internal function. The research aims to develop a soil model, which addresses some of the shortcomings of the modified cam-clay model, specifically the fact that it cannot model small strain stiffness, or the effects of immediate stress history. All expressions used are consistent with critical state soil mechanics terminology. Finally, a numerical implementation of the model using a rate-dependent algorithm is described. Copyright © 2005 John Wiley & Sons, Ltd. [source] Dynamic numerical simulations of void growth and coalescence with stress triaxiality maintained constant,Application to ductile solids with secondary voidsINTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN BIOMEDICAL ENGINEERING, Issue 12 2008L. Siad Abstract Dynamic explicit finite element analysis is used to investigate void growth and plastic collapse of an axisymmetric unit cell model with a primary spherical void imbedded in a porous matrix material. The Gurson,Tvergaard,Needleman homogenized model is used to describe the plastic behaviour of the matrix material. The simulations are performed under large strain conditions for varying secondary void volume fractions and quasi-static loading controlled by constant stress triaxiality. The proposed accomplishment of constant stress triaxiality associated with dynamic explicit computations provides a method allowing to trace the collapse of the unit cell from the onset of coalescence to practically its final failure. Consistent with experimental and theoretical results available in the literature, the obtained results substantiate the sensitivity of coalescence to the presence of secondary voids. Copyright © 2008 John Wiley & Sons, Ltd. [source] Crazing and Fracture in Polymers: Micro-Mechanisms and Effect of Molecular VariablesMACROMOLECULAR SYMPOSIA, Issue 1 2004H.H. Kausch Abstract The influence of the primary molecular parameters chain configuration, architecture and molecular weight (MW) on the mode of mechanical breakdown is discussed for two series of (amorphous) thermoplastic polymers, methyl methacrylate glutarimide copolymers and amorphous semi-aromatic polyamides. Structural and dynamic analyses and fracture mechanical methods applied to such adequately chemically modified (glassy) polymers permit us to show and to explain the effect of intrinsic variables on local molecular motions and on the competition between chain scission, disentanglement and segmental slip, which in turn determine the dominant mode of instability and plastic behaviour. Above a critical molecular weight, toughness depends most strongly on the entanglement density; a positive effect of the intensity of sub-Tg relaxations and in-chain cooperative motions on the toughness of these materials is clearly evident. [source] Plasticity in vertical behaviour of migrating juvenile southern bluefin tuna (Thunnus maccoyii) in relation to oceanography of the south Indian OceanFISHERIES OCEANOGRAPHY, Issue 4 2009SOPHIE BESTLEY Abstract Electronic tagging provides unprecedented information on the habitat use and behaviour of highly migratory marine predators, but few analyses have developed quantitative links between animal behaviour and their oceanographic context. In this paper we use archival tag data from juvenile southern bluefin tuna (Thunnus maccoyii, SBT) to (i) develop a novel approach characterising the oceanographic habitats used throughout an annual migration cycle on the basis of water column structure (i.e., temperature-at-depth data from tags), and (ii) model how the vertical behaviour of SBT altered in relation to habitat type and other factors. Using this approach, we identified eight habitat types occupied by juvenile SBT between the southern margin of the subtropical gyre and the northern edge of the Subantarctic Front in the south Indian Ocean. Although a high degree of variability was evident both within and between fish, mixed-effect models identified consistent behavioural responses to habitat, lunar phase, migration status and diel period. Our results indicate SBT do not act to maintain preferred depth or temperature ranges, but rather show highly plastic behaviours in response to changes in their environment. This plasticity is discussed in terms of the potential proximate causes (physiological, ecological) and with reference to the challenges posed for habitat-based standardisation of fishery data used in stock assessments. [source] |