Plasma Optical Emission Spectrometry (plasma + optical_emission_spectrometry)

Distribution by Scientific Domains


Selected Abstracts


Growth and photorefractive properties of Mg:Ce:Cu:LiNbO3 crystals grown by Czochralski method

CRYSTAL RESEARCH AND TECHNOLOGY, Issue 8 2006
Y. X. Fan
Abstract In this paper, photorefractive properties of Mg:Ce:Cu:LiNbO3 crystals were studied. The crystals doped with different concentration of Mg ions have been grown by the Czochralski method. Mg concentrations in grown crystals were analyzed by an inductively coupled plasma optical emission spectrometry (ICP-OE/MS). The crystal structures were analyzed by the X-ray powder diffraction (XRD), ultraviolet-visible (UV-Vis) absorption spectra and infrared (IR) transmitatance spectra. The photorefractive properties of crystals were experimentally studied by using two-beam coupling. In this experiment we determined the writing time, maximum diffraction efficiency and the erasure time of crystals samples with He-Ne laser. The results showed that the dynamic range (M/#), sensitivity (S) and diffraction efficiency (,) were dependent on the Mg doping concentration, and the Mg(4.58mol%):Ce:Cu:LiNbO3 crystal was the most proper holographic recording media material among the six crystals studied in the paper. (© 2006 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim) [source]


Characterisation of avocado (Persea americana Mill) honeys by their physicochemical characteristics

JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE, Issue 13 2004
Anass Terrab
Abstract The quality of 12 avocado (Persea americana Mill) honeys from Spain was evaluated. Eight common physicochemical parameters were analysed, namely water content, pH, acidity (free, lactonic and total), sugar content, ash content and electrical conductivity. In addition, the honey samples were analysed using inductively coupled plasma optical emission spectrometry (ICP-OES), and six minerals were quantified for each honey, namely potassium (K), calcium (Ca), magnesium (Mg), sodium (Na), phosphorus (P) and sulphur (S). Most samples showed proper maturity considering the medium water content (mean 17.7%). The total acidity (below 50 meq kg,1 except for one sample) indicated absence of undesirable fermentation; also, the mean pH of around 4.77 is usual in this kind of honey. The values for ash content and electrical conductivity were high (0.77% and 798 µS cm,1 respectively) and typical of dark honeys. K was the predominant mineral (accounting for 73% of the total minerals quantified), followed by Na (10%). Copyright © 2004 Society of Chemical Industry [source]


Determination of refractory elements in atmospheric particulates using slurry sampling electrothermal vaporization inductively coupled plasma optical emission spectrometry and inductively coupled plasma mass spectrometry with polyvinylidene fluoride as chemical modifier

RAPID COMMUNICATIONS IN MASS SPECTROMETRY, Issue 14 2006
Yuefei Zhang
Electrothermal vaporization (ETV) inductively coupled plasma optical emission spectrometry (ICP-OES) and inductively coupled plasma mass spectrometry (ICP-MS) with polyvinylidene fluoride (PVDF) as chemical modifier are critically compared for the determination of refractory elements in coal fly ash and airborne particulates. The atmospheric particulates that collected on a PVDF filter were introduced into the graphite furnace in the form of a slurry by dissolving the filter in dimethylformamide, and the dissolved filter PVDF, along with additional added PVDF powder, was used as a chemical modifier for subsequent ETV-ICP-OES and ETV-ICP-MS determination. The vaporization behaviors of analytes (Ti, Zr, V, Mo, Cr, La) in ETV-ICP-OES/MS were studied in detail, and the optimal ETV operating parameters were obtained. Under the optimized operating conditions, the detection limits of target elements were 0.08,2.7,ng,m,3 for ETV-ICP-OES and 0.5,50,pg,m,3 for ETV-ICP-MS, respectively, with analytical precisions of 3.5,7.3% for ETV-ICP-OES and 3.9,9.6% for ETV-ICP-MS, respectively. The tolerable amounts of matrix elements for ETV-ICP-OES are higher than for ETV-ICP-MS. Both ETV-ICP-OES and ETV-ICP-MS were used to directly determine the trace refractory elements in coal fly ash and airborne particulates and the analytical results are comparable. Copyright © 2006 John Wiley & Sons, Ltd. [source]