Home About us Contact | |||
Plasma Membrane Domains (plasma + membrane_domain)
Selected AbstractsCaveolin-1 secreting LNCaP cells induce tumor growth of caveolin-1 negative LNCaP cells in vivoINTERNATIONAL JOURNAL OF CANCER, Issue 3 2008René Bartz Abstract Caveolin-1 (Cav-1) was originally identified as a structural protein of caveolae, which is a plasma membrane domain that regulates a variety of signaling pathways involved in cell growth and migration. Here, we show that expression of Cav-1 in the Cav-1-deficient human prostate cancer cell line LNCaP both stimulates cell proliferation and promotes tumor growth in nude mice. Unexpectedly, Cav-1 expressing LNCaP (LNCaPCav-1) cells injected into one side of a nude mouse promoted tumor growth of Cav-1 negative LNCaP cells injected on the contralateral side of the same animal. The LNCaP tumors were positive for Cav-1, however, this signal was not caused by migrated LNCaPCav-1 cells, but we show that this Cav-1 was secreted by the LNCaPCav-1 tumors. We demonstrate that conditioned media from LNCaPCav-1 cells contained Cav-1 that was associated with a lipoprotein particle ranging in size from 15 to 30 nm and a density similar to high density lipoprotein particle. These results suggest that LNCaPCav-1 cells secreting Cav-1 particle produce an endocrine factor that stimulates tumor growth. © 2007 Wiley-Liss, Inc. [source] The Complementary Membranes Forming the Blood-Brain BarrierIUBMB LIFE, Issue 3 2002Richard A. Hawkins Abstract Brain capillary endothelial cells form the blood-brain barrier. They are connected by extensive tight junctions, and are polarized into luminal (blood-facing) and abluminal (brain-facing) plasma membrane domains. The polar distribution of transport proteins allows for active regulation of brain extracellular fluid. Experiments on isolated membrane vesicles from capillary endothelial cells of bovine brain demonstrated the polar arrangement of amino acid and glucose transporters, and the utility of such arrangements have been proposed. For instance, passive carriers for glutamine and glutamate have been found only in the luminal membrane of blood-brain barrier cells, while Na-dependent secondary active transporters are at the abluminal membrane. This organization could promote the net removal of nitrogen-rich amino acids from brain, and account for the low level of glutamate penetration into the central nervous system. Furthermore, the presence of a ,-glutamyl cycle at the luminal membrane and Na-dependent amino acid transporters at the abluminal membrane may serve to modulate movement of amino acids from blood-to-brain. Passive carriers facilitate amino acid transport into brain. However, activation of the ,-glutamyl cycle by increased plasma amino acids is expected to generate oxoproline within the blood-brain barrier. Oxoproline stimulates secondary active amino acid transporters (Systems A and B o,+ ) at the abluminal membrane, thereby reducing net influx of amino acids to brain. Finally, passive glucose transporters are present in both the luminal and abluminal membranes of the blood-brain barrier. Interestingly, a high affinity Na-dependent glucose carrier has been described only in the abluminal membrane. This raises the question whether glucose entry may be regulated to some extent. Immunoblotting studies suggest more than one type of passive glucose transporter exist in the blood-brain barrier, each with an asymmetrical distribution. In conclusion, it is now clear that the blood-brain barrier participates in the active regulation of brain extracellular fluid, and that the diverse functions of each plasma membrane domain contributes to these regulatory functions. [source] Enterocytin: A new specific enterocyte marker bearing a B30.2-like domainJOURNAL OF CELLULAR PHYSIOLOGY, Issue 3 2004Stéphane Parnis Enterocyte differentiation is correlated to the expression of specific proteins which only a few of them are identified. In this study, we characterize a new marker of enterocyte differentiation using monoclonal antibodies. We showed that small intestinal enterocytes specifically express a new 47 kDa protein named Enterocytin. Expression of this protein increase along the crypt-villus axis and it is concentrated in the terminal web, lateral plasma membrane domain, and nucleus membrane of mature enterocytes. A 1.8-kb cDNA of Enterocytin was isolated by expression cloning from a cDNA library of rabbit small intestine. The amino acid sequence obtained shows an N-terminal region with a coiled-coil structure and a B30.2-like domain in the C-terminus region. By co-transfection and immunoprecipitation procedures on Cos cells, it was observed that the coiled-coil domain is involved in the homodimerization of Enterocytin. In the human intestine, a similar 47 kDa protein was detected, exclusively in the small intestinal enterocytes. In addition, expression of this protein in Caco2 cells is correlated with the state of differentiation of these cells. The restricted expression of Enterocytin in the intestine and its localization in mature cells suggest that it may contribute to the differentiation processes and maintenance of the enterocytic polarity. J. Cell. Physiol. 198: 441,451, 2004© 2003 Wiley-Liss, Inc. [source] Surface mapping of binding of oviductin to the plasma membrane of golden hamster spermatozoa during in vitro capacitation and acrosome reactionMOLECULAR REPRODUCTION & DEVELOPMENT, Issue 6 2006Frederick W.K. Kan Abstract Oviductins are high-molecular-weight glycoproteins synthesized and secreted by nonciliated oviductal epithelial cells and have been shown to play a role in fertilization and early embryo development. The present study was carried out to examine the in vitro binding capacity of hamster oviductin to homologous sperm and to determine the sites of its localization in untreated, capacitated, and acrosome-reacted spermatozoa. Freshly prepared epididymal and capacitated sperm as well as acrosome-reacted sperm were incubated with oviductal fluid prepared from isolated hamster oviducts, fixed and then probed with a monoclonal antibody against hamster oviductin. Results obtained with pre-embedding immunolabeling experiments revealed binding of oviductin to the acrosomal cap and the apical aspect of the postacrosomal region. Immunolabeling of both regions appeared to be more intense in capacitated spermatozoa. Acrosome-reacted sperm showed an immunoreaction of moderate intensity over the postacrosomal region. The plasma membrane overlying the equatorial segment also exhibited a weak labeling. Quantitative analysis obtained with the surface replica technique indicated that oviductin had a higher binding affinity for the acrosomal cap than the postacrosomal region and that the binding of oviductin to the latter plasma membrane domain was enhanced during capacitation. Binding of oviductin to the postacrosomal region, however, was attenuated after acrosome reaction. Immunolabeling for oviductin was found to be the weakest over the equatorial segment regardless of the experimental conditions. The binding of hamster oviductin to specific membrane domains of the homologous sperm and the changes in its distribution during capacitation and acrosome reaction may be important for the function of hamster oviductin preceding and during fertilization. Mol. Reprod. Dev. © 2006 Wiley-Liss, Inc. [source] The Complementary Membranes Forming the Blood-Brain BarrierIUBMB LIFE, Issue 3 2002Richard A. Hawkins Abstract Brain capillary endothelial cells form the blood-brain barrier. They are connected by extensive tight junctions, and are polarized into luminal (blood-facing) and abluminal (brain-facing) plasma membrane domains. The polar distribution of transport proteins allows for active regulation of brain extracellular fluid. Experiments on isolated membrane vesicles from capillary endothelial cells of bovine brain demonstrated the polar arrangement of amino acid and glucose transporters, and the utility of such arrangements have been proposed. For instance, passive carriers for glutamine and glutamate have been found only in the luminal membrane of blood-brain barrier cells, while Na-dependent secondary active transporters are at the abluminal membrane. This organization could promote the net removal of nitrogen-rich amino acids from brain, and account for the low level of glutamate penetration into the central nervous system. Furthermore, the presence of a ,-glutamyl cycle at the luminal membrane and Na-dependent amino acid transporters at the abluminal membrane may serve to modulate movement of amino acids from blood-to-brain. Passive carriers facilitate amino acid transport into brain. However, activation of the ,-glutamyl cycle by increased plasma amino acids is expected to generate oxoproline within the blood-brain barrier. Oxoproline stimulates secondary active amino acid transporters (Systems A and B o,+ ) at the abluminal membrane, thereby reducing net influx of amino acids to brain. Finally, passive glucose transporters are present in both the luminal and abluminal membranes of the blood-brain barrier. Interestingly, a high affinity Na-dependent glucose carrier has been described only in the abluminal membrane. This raises the question whether glucose entry may be regulated to some extent. Immunoblotting studies suggest more than one type of passive glucose transporter exist in the blood-brain barrier, each with an asymmetrical distribution. In conclusion, it is now clear that the blood-brain barrier participates in the active regulation of brain extracellular fluid, and that the diverse functions of each plasma membrane domain contributes to these regulatory functions. [source] Temperature-dependent localization of GPI-anchored intestinal alkaline phosphatase in model rafts,JOURNAL OF MOLECULAR RECOGNITION, Issue 6 2007Marie-Cécile Giocondi Abstract In plasma membranes, most of glycosylphosphatidylinositol (GPI)-anchored proteins would be associated with rafts, a category of ordered microdomains enriched in sphingolipids and cholesterol (Ch). They would be also concentrated in the detergent resistant membranes (DRMs), a plasma membrane fraction extracted at low temperature. Preferential localization of GPI-anchored proteins in these membrane domains is essentially governed by their high lipid order, as compared to their environment. Changes in the temperature are expected to modify the membrane lipid order, suggesting that they could affect the distribution of GPI-anchored proteins between membrane domains. Validity of this hypothesis was examined by investigating the temperature-dependent localization of the GPI-anchored bovine intestinal alkaline phophatase (BIAP) into model raft made of palmitoyloleoylphosphatidylcholine/sphingomyelin/cholesterol (POPC/SM/Chl) supported membranes. Atomic force microscopy (AFM) shows that the inserted BIAP is localized in the SM/Chl enriched ordered domains at low temperature. Above 30°C, BIAP redistributes and is present in both the ,fluid' POPC enriched and the ordered SM/Chl domains. These data strongly suggest that in cells the composition of plasma membrane domains at low temperature differs from that at physiological temperature. Copyright © 2007 John Wiley & Sons, Ltd. [source] Intracellular membrane trafficking in bone resorbing osteoclastsMICROSCOPY RESEARCH AND TECHNIQUE, Issue 6 2003Mika Mulari Abstract There is ample evidence now that the two major events in bone resorption, namely dissolution of hydroxyapatite and degradation of the organic matrix, are performed by osteoclasts. The resorption cycle involves several specific cellular activities, where intracellular vesicular trafficking plays a crucial role. Although details of these processes started to open up only recently, it is clear that vesicular trafficking is needed in several specific steps of osteoclast functioning. Several plasma membrane domains are formed during the polarization of the resorbing cells. Multinucleated osteoclasts create a tight sealing to the extracellular matrix as a first indicator of their resorption activity. Initial steps of the sealing zone formation are ,v,3 -integrin mediated, but the final molecular interaction(s) between the plasma membrane and mineralized bone matrix is still unknown. A large number of acidic intracellular vesicles then fuse with the bone-facing plasma membrane to form a ruffled border membrane, which is the actual resorbing organelle. The formation of a ruffled border is regulated by a small GTP-binding protein, rab7, which indicates the late endosomal character of the ruffled border membrane. Details of specific membrane transport processes in the osteoclasts, e.g., the formation of the sealing zone and transcytosis of bone degradation products from the resorption lacuna to the functional secretory domain remain to be clarified. It is tempting to speculate that specific features of vesicular trafficking may offer several potential new targets for drug therapy of bone diseases. Microsc. Res. Tech. 61:496,503, 2003. © 2003 Wiley-Liss, Inc. [source] TRPC channels function independently of STIM1 and Orai1THE JOURNAL OF PHYSIOLOGY, Issue 10 2009Wayne I. DeHaven Recent studies have defined roles for STIM1 and Orai1 as calcium sensor and calcium channel, respectively, for Ca2+ -release activated Ca2+ (CRAC) channels, channels underlying store-operated Ca2+ entry (SOCE). In addition, these proteins have been suggested to function in signalling and constructing other channels with biophysical properties distinct from the CRAC channels. Using the human kidney cell line, HEK293, we examined the hypothesis that STIM1 can interact with and regulate members of a family of non-selective cation channels (TRPC) which have been suggested to also function in SOCE pathways under certain conditions. Our data reveal no role for either STIM1 or Orai1 in signalling of TRPC channels. Specifically, Ca2+ entry seen after carbachol treatment in cells transiently expressing TRPC1, TRPC3, TRPC5 or TRPC6 was not enhanced by the co-expression of STIM1. Further, knockdown of STIM1 in cells expressing TRPC5 did not reduce TRPC5 activity, in contrast to one published report. We previously reported in stable TRPC7 cells a Ca2+ entry which was dependent on TRPC7 and appeared store-operated. However, we show here that this TRPC7-mediated entry was also not dependent on either STIM1 or Orai1, as determined by RNA interference (RNAi) and expression of a constitutively active mutant of STIM1. Further, we determined that this entry was not actually store-operated, but instead TRPC7 activity which appears to be regulated by SERCA. Importantly, endogenous TRPC activity was also not regulated by STIM1. In vascular smooth muscle cells, arginine-vasopressin (AVP) activated non-selective cation currents associated with TRPC6 activity were not affected by RNAi knockdown of STIM1, while SOCE was largely inhibited. Finally, disruption of lipid rafts significantly attenuated TRPC3 activity, while having no effect on STIM1 localization or the development of ICRAC. Also, STIM1 punctae were found to localize in regions distinct from lipid rafts. This suggests that TRPC signalling and STIM1/Orai1 signalling occur in distinct plasma membrane domains. Thus, TRPC channels appear to be activated by mechanisms dependent on phospholipase C which do not involve the Ca2+ sensor, STIM1. [source] Plasma membrane delivery, endocytosis and turnover of transcobalamin receptor in polarized human intestinal epithelial cellsTHE JOURNAL OF PHYSIOLOGY, Issue 2 2007Santanu Bose Cells that are metabolically active and in a high degree of differentiation and proliferation require cobalamin (Cbl: vitamin B12) and they obtain it from the circulation bound to transcobalamin (TC) via the transcobalamin receptor (TC-R). This study has investigated the plasma membrane dynamics of TC-R expression in polarized human intestinal epithelial Caco-2 cells using techniques of pulse-chase labelling, domain-specific biotinylation and cell fractionation. Endogenously synthesized TC-R turned over with a half-life (T1/2) of 8 h following its delivery to the basolateral plasma membrane (BLM). The T1/2 of BLM delivery was 15 min and TC-R delivered to the BLM was endocytosed and subsequently degraded by leupeptin-sensitive proteases. However, about 15% of TC-R endocytosed from the BLM was transcytosed (T1/2, 45 min) to the apical membranes (BBM) where it underwent endocytosis and was degraded. TC-R delivery to both BLM and BBM was inhibited by Brefeldin A and tunicamycin, but not by wortmannin or leupeptin. Colchicine inhibited TC-R delivery to BBM, but not BLM. At steady state, apical TC-R was associated with megalin and both these proteins were enriched in an intracellular compartment which also contained Rab5 and transferrin receptor. These results indicate that following rapid delivery to both plasma membrane domains of Caco-2 cells, TC-R undergoes constitutive endocytosis and degradation by leupeptin-sensitive proteases. TC-R expressed in apical BBM complexes with megalin during its transcytosis from the BLM. [source] |