Plasma MDA (plasma + mda)

Distribution by Scientific Domains


Selected Abstracts


Influence of therapy on the antioxidant status in patients with melanoma

JOURNAL OF CLINICAL PHARMACY & THERAPEUTICS, Issue 2 2008
V. Gadjeva DSc
Summary Background and objective:, Some anticancer drugs can result in increased production of reactive oxygen species (ROS). Alkylating agents are the most frequently used drugs in chemotherapeutic regimens for the treatment of malignant melanoma. It is known that triazenes exhibit in vivo activity by alkylation of nucleic acids and proteins, but there is no data about ROS formation during oxidative metabolism. Single agents of most interest for treatment of malignant melanomas include 5-(3,3-dimethyltriazene-1-yl)-imidazole-4-carboxamide (DTIC) and nitrosoureas such as 1-(2-chloroethyl) -3-cyclohexyl-1-nitrosourea (CCNU), but complete response to these drugs is rare. The present study aimed to determine whether an oxidative stress occurs during the clinical course of melanoma and the influence of therapy on the antioxidant status of patients with melanoma. For this purpose, we investigated plasma concentrations of MDA as indices of the levels of lipid peroxidation products. In addition, we studied the activities of the antioxidant enzymes superoxide dismutases (SOD) and catalase (CAT) in patients with melanoma before any treatment, after surgical removal of melanoma, and after chemotherapy with DTIC or in combination with CCNU of the operated patients. Methods:, Twenty one patients with melanoma were studied. Patients were operated prior to chemotherapy. After recovery for 10,20 days postoperatively, they were studied again for MDA, SOD and CAT activity. The patients were divided into two groups according to the chemotherapy (3,7 treatment cycles): with DTIC , given orally daily for 5 days, every 3 weeks as a single 2200 mg/kg dose and with the combination , DTIC (the same dose) + CCNU , administered orally at a dosage of 120 mg/m2 once every 40 days in accordance with protocols, approved by the Bulgarian Ministry of Health. The total amount of lipid peroxidation products in plasma was assayed. Results and discussion:, Plasma levels of MDA and CAT activity were significantly higher, and erythrocyte SOD activity significantly lower, in patients with melanoma, than in control healthy volunteers (P < 0·0001). Ten to twenty days after surgery, oxidative stress decreased but levels of MDA increased as a result of therapy. Important sources of increased ROS production may be the monocytes, phagocytosis of tumour cells and the cancer tissues. Plasma MDA in patients treated with DTIC + CCNU were significantly higher (P < 0·001), but erythrocyte SOD statistically lower (P < 0·00001), compared with patients treated with DTIC only. However, a combination of DTIC + CCNU did not attenuate oxidative stress, or reduced antioxidant status. Patients treated with this combination are at bigger risk of oxidative injury. Therefore, this disturbance might be due to augmented generation of toxic ROS, possibly from the metabolism of CCNU. Conclusion:, Increased oxidative stress follows an imbalance in antioxidant defence in non-treated patients with melanoma. The impaired antioxidant system favours accumulation of ROS, which may promote the cancer process. After complete removal of melanoma tissues, oxidative stress decreased. The antioxidant status of melanoma patients operated on was influenced by the different chemotherapeutic regimens used and may play an important role in the response. Patients on DTIC + CCNU are at higher risk of oxidative injury. This drug combination probably exerts its toxic activity by ROS, which could be products of the metabolism of CCNU. [source]


Melatonin ameliorates chronic renal failure-induced oxidative organ damage in rats

JOURNAL OF PINEAL RESEARCH, Issue 4 2004
Göksel, ener
Abstract:, Chronic renal failure (CRF) is associated with oxidative stress that promotes production of reactive oxygen species (ROS). Melatonin, the chief secretory product of the pineal gland, was recently found to be a potent free radical scavenger and antioxidant. The aim of this study was to examine the role of melatonin in protecting the aorta, heart, corpus cavernosum, lung, diaphragm, and kidney tissues against oxidative damage in a rat model of CRF, which was induced by five of six nephrectomy. Male Wistar albino rats were randomly assigned to either the CRF group or the sham-operated control group, which had received saline or melatonin (10 mg/kg, i.p.) for 4 wk. CRF was evaluated by serum blood urea nitrogen (BUN) level and creatinine measurements. Aorta and corporeal tissues were used for contractility studies, or stored along with heart, lung, diaphragm, and kidney tissues for the measurement of malondialdehyde (MDA, an index of lipid peroxidation), protein carbonylation (PC, an index for protein oxidation), and glutathione (GSH) levels (a key antioxidant). Plasma MDA, PC, and GSH levels and erythrocytic superoxide dismutase (SOD), catalase (CAT), and glutathione peroxidase (GSH-Px) activities were studied to evaluate the changes of antioxidant status in CRF. In the CRF group, the contraction and the relaxation of aorta and corpus cavernosum samples decreased significantly compared with controls (P < 0.05,0.001). Melatonin treatment of the CRF group restored these responses. In the CRF group, there were significant increases in tissue MDA and PC levels in all tissues with marked reductions in GSH levels compared with controls (P < 0.05,0.001). In the plasma, while MDA and PC levels increased, GSH, SOD, CAT, and GSH-Px activities were reduced. Melatonin treatment reversed these effects as well. In this study, the increase in MDA and PC levels and the concomitant decrease in GSH levels of tissues and plasma and also SOD, CAT, GSH-Px activities of plasma demonstrate the role of oxidative mechanisms in CRF-induced tissue damage, and melatonin, via its free radical scavenging and antioxidant properties, ameliorates oxidative organ injury. CRF-induced dysfunction of the aorta and corpus cavernosum of rats was reversed by melatonin treatment. Thus, supplementing CRF patients with adjuvant therapy of melatonin may have some benefit. [source]


The comparison of in vivo antigenotoxic and antioxidative capacity of two propylene glycol extracts of Calendula officinalis (marigold) and vitamin E in young growing pigs

JOURNAL OF ANIMAL PHYSIOLOGY AND NUTRITION, Issue 6 2009
T. Franki
Summary The objective of the study was to evaluate the protective effect of Calendula officinalis propylene glycol extracts against oxidative DNA damage and lipid peroxidation induced by high polyunsaturated fatty acid (PUFA) intake in young growing pigs. Forty young growing pigs were assigned to five treatment groups: control; oil (linseed oil supplementation); C. officinalis 1 and 2 groups (linseed oil plus 3 ml/day of C. officinalis propylene glycol extracts); and vitamin E group (linseed oil plus 100 mg/kg of vitamin E). Lymphocyte DNA fragmentation and 24-h urinary 8-hydroxy-2,-deoxyguanosine (8-OHdG) excretion were measured to determine DNA damage. Lipid peroxidation was studied by analysing plasma and urine malondialdehyde (MDA), and urine isoprostane concentrations (iPF2,-VI), total antioxidant status of plasma and glutathione peroxidase (GPx) assays. C. officinalis 1 (extract from petals) effectively protected DNA from oxidative damage. It indicated a numerical trend towards the reduction of plasma MDA and urinary iPF2,-VI excretion. Its effect was comparable with that of vitamin E. C. officinalis 2 (extract from flower tops) showed less antioxidant potential than the extract from petals. We can conclude that the amount of C. officinalis extracts proposed for internal use by traditional medicine protects the organism against DNA damage induced by high PUFA intake. [source]


Oxidative damage to DNA and lipids: correlation with protein glycation in patients with type 1 diabetes

JOURNAL OF CLINICAL LABORATORY ANALYSIS, Issue 2 2010
Mohammad Taghi Goodarzi
Abstract Diabetic hyperglycemia is associated with increased production of reactive oxygen species (ROS). ROS reacts with DNA resulting in various products, such as 8-hydroxydeoxyguanosine (8-OHdG), that excrete in urine owing to DNA repair processes. Urinary 8-OHdG has been proposed as an indicator of oxidative damage to DNA. This study aimed to evaluate relationship between oxidative damage to DNA and protein glycation in patients with Type 1 diabetes. We measured urinary 8-OHdG level in diabetic patients and healthy subjects and discussed its relationship to glycated hemoglobin (HbA1c) and glycated serum protein (GSP) levels. Furthermore plasma malondialdehyde (MDA) level monitored as an important indicator of lipid peroxidation in diabetes. We studied 32 patients with Type 1 diabetes mellitus and compared the measured factors with those of 48 age-matched nondiabetic controls. GSP and MDA were measured bycolorimetric assay. Urinary 8-OHdG measurement was carried out using ELISA. In this study urinary 8-OHdG, HbA1c, plasma MDA, and GSP levels were progressively higher in diabetics than in control subjects (P<0.05). Furthermore we found significant correlation between urinary 8-OHdG and HbA1c (P<0.05) in diabetic group. Correlation between fasting blood sugar and GSP were significant. We also found significant correlation between fasting blood sugar and MDA. This case,control study in young diabetic patients showed increased blood glucose and related metabolic disorders result in oxidative stress and oxidative damage to DNA and lipids. Furthermore oxidative damage to DNA is associated to glycemic control level, whereas lipid peroxidation level was not significantly correlated with glycemic control level. J. Clin. Lab. Anal. 24:72,76, 2010. © 2010 Wiley-Liss, Inc. [source]


Effect of X-Radiation on Lipid Peroxidation and Antioxidant Systems in Rats Treated with Saponin-containing Compounds

PHOTOCHEMISTRY & PHOTOBIOLOGY, Issue 1 2008
Omer Yalinkilic
The aim of this study was to investigate the effect of three saponin-containing plant species extracts (Aesculuc hippocastanum L. seed extract [AHE], Medicago sativa L. extract [MSE] and Spinacia oleracea L. extract [SOE]) on lipid peroxidation and on antioxidant systems in rats exposed to X-rays (XR). The rats were divided into three categories. The first category served as controls and received only a standard diet. The second category served as the radiation group and received 5 and 10 Gy XR dose. The third category (XR+extract-treated) received plant extracts (25.0 or 50.0 mg kg,1 live weight) and 5 or 10 Gy XR dose. Blood samples were analyzed for their content of malondialdehyde (MDA), reduced glutathione (GSH), plasma vitamin C, ,-carotene and retinol. In animals receiving XR, the plasma MDA (P < 0.001) value significantly increased but the level of GSH (P < 0.01), vitamin C (P < 0.001), retinol and ,-carotene (P < 0.001) decreased significantly with increasing XR doses. In the XR+extract-treated groups, the concentrations of MDA increased significantly with increasing radiation but their concentrations decreased significantly with increasing extract concentrations. Plasma concentrations of GSH, ,-carotene, retinol and vitamin C in XR+extract-treated groups decreased significantly with increasing XR dose but their concentrations increased with increasing extract doses. Further, comparison of blood samples of XR+extract-treated groups with those from the control group showed that GSH, ,-carotene, retinol and vitamin C values increased significantly but that MDA values decreased significantly. The results showed that all extracts have enhanced the antioxidant status and decreased the incidence of free radical-induced lipid peroxidation in blood samples of rats exposed to XR. However, the antioxidant effect of AHE-administered animals was more effective than that of MSE- and SOE-administered whole-body XR rats. We conclude that the supplementation with saponin-containing extracts may serve to reinforce the antioxidant systems, thus having protective effect against cell damage by XR. [source]