Plasma FFA (plasma + ffa)

Distribution by Scientific Domains


Selected Abstracts


Comparison of the antilipolytic effects of an A1 adenosine receptor partial agonist in normal and diabetic rats

DIABETES OBESITY & METABOLISM, Issue 2 2009
A. K. Dhalla
Introduction and Aims:, Elevated plasma free fatty acid (FFA) concentrations play a role in the pathogenesis of type 2 diabetes (2DM). Antilipolytic agents that reduce FFA concentrations may be potentially useful in the treatment of 2DM. Our previous observation that CVT-3619 lowered plasma FFA and triglyceride concentrations in rats and enhanced insulin sensitivity in rodents with dietary-induced forms of insulin resistance suggested that it might be of use in the treatment of patients with 2DM. The present study was undertaken to compare the antilipolytic effects of CVT-3619 in normal (Sprague Dawley, SD) and Zucker diabetic fatty (ZDF) rats. Results:, ZDF rats had significantly higher fat pad weight, glucose, insulin and FFA concentrations than those of SD rats. EC50 values for forskolin-stimulated FFA release from isolated adipocytes from SD and ZDF rats were 750 and 53 nM, respectively (p < 0.05). Maximal forskolin stimulation of FFA release was significantly (p < 0.01) less in ZDF rats (133 ± 60 ,M) compared with SD rats (332 ± 38 ,M). EC50 values for isoproterenol to increase lipolysis in adipocytes from SD and ZDF rats were 2 and 7 nM respectively. Maximal isoproterenol-stimulated lipolysis was significantly (p < 0.01) lower in adipocytes from ZDF rats (179 ± 23 ,M) compared with SD rats (343 ± 27 ,M). Insulin inhibited lipolysis in adipocytes from SD rats with an IC50 value of 30 pM, whereas adipocytes from ZDF rats were resistant to the antilipolytic actions of insulin. In contrast, IC50 values for CVT-3619 to inhibit the release of FFA from SD and ZDF adipocytes were essentially the same (63 and 123 nM respectively). CVT-3619 inhibited lipolysis more than insulin in both SD (86 vs. 46%, p < 0.001) and ZDF (80 vs. 13%, p < 0.001) adipocytes. In in vivo experiments, CVT-3619 (5 mg/kg, PO) lowered FFA to a similar extent in both groups. Plasma concentrations of CVT-3619 were not different in SD and ZDF rats. There was no significant difference in the messenger RNA expression of the A1 receptors relative to ,-actin expression in adipocytes from SD (0.98 ± 0.2) and ZDF rats (0.99 ± 0.3). Conclusion:, The antilipolytic effects of CVT-3619 appear to be independent of insulin resistance and animal model. [source]


Free fatty acids as mediators of adaptive compensatory responses to insulin resistance in dexamethasone-treated rats

DIABETES/METABOLISM: RESEARCH AND REVIEWS, Issue 2 2008
Michela Novelli
Abstract Background Chronic low-dose dexamethasone (DEX) treatment in rats is associated to insulin resistance with compensatory hyperinsulinaemia and reduction in food intake. We tested the hypothesis that the elevation in circulating free fatty acids (FFAs) induced by DEX is the common mediator of both insulin resistance and insulin hyperproduction. Methods For this purpose, an anti-lipolytic agent was administered during DEX treatment to lower lipacidaemia for several hours prior to glucose and insulin tolerance tests. Leptin expression in adipose tissue (by Northern blot) and plasma leptin levels (by radioimmunoassay) were also investigated to verify whether a rise in circulating leptin could be responsible for the anorectic effect of DEX. Results Our data show that a transient pharmacological reduction of elevated plasma FFA levels abates the post-loading hyperinsulinaemia and counteracts the insulin resistance induced by DEX, supporting the hypothesis that the chronic elevation in FFAs is the common mediator of DEX-induced changes. Despite enhanced leptin expression in white adipose tissue, DEX-treated rats show no significant increase in plasma leptin levels. This suggests that the anorectic effect of DEX should be mediated, at least partially, by other factors, possibly related to the influence of concomitantly elevated plasma FFA and insulin levels on the hypothalamic centers regulating feeding. Conclusions Our results sustain the idea that a prolonged increase in plasma FFA levels plays an important role in the adaptive regulation of glucose and energy homeostasis, not only by potentiating insulin secretion but also by providing a signal of ,nutrient abundance' capable of restraining food intake. Copyright © 2007 John Wiley & Sons, Ltd. [source]


Free fatty acids exert a greater effect on ocular and skin blood flow than triglycerides in healthy subjects

EUROPEAN JOURNAL OF CLINICAL INVESTIGATION, Issue 8 2004
M. Bayerle-Eder
Abstract Background, Free fatty acids (FFAs) and triglycerides (TGs) can cause vascular dysfunction and arteriosclerosis. Acute elevation of plasma FFA and TG concentration strongly increase ocular and skin blood flow. This study was designed to discriminate whether FFA or TG independently induce hyperperfusion by measuring regional and systemic haemodynamics. Methods, In a balanced, randomized, placebo-controlled, double-blind, three-way, crossover study nine healthy subjects received either Intralipid® (Pharmacia and Upjohn, Vienna, Austria) with heparin, Intralipid® alone or placebo control. Pulsatile choroidal blood flow was measured with laser interferometry, retinal blood flow and retinal red blood cell velocity with laser Doppler velocimetry, and skin blood flow with laser Doppler flowmetry during an euglycaemic insulin clamp. Results, A sevenfold increase of FFA during Intralipid®/heparin infusion was paralleled by enhanced choriodal, retinal, and skin blood flow by 17 ± 4%, 26 ± 5% (P < 0·001), and 47 ± 19% (P = 0·03) from baseline, respectively. In contrast, a mere threefold increase of FFA by infusion of Intralipid® alone did not affect outcome parameters, despite the presence of plasma TG levels of 250,700 mg dL,1; similar to those obtained during combined Intralipid®/heparin infusion. Systemic haemodynamics were not affected by drug infusion. Conclusions, Present findings demonstrate a concentration-dependent increase in ocular and skin blood flow by FFA independently of elevated TG plasma concentrations. As vasodilation of resistance vessels occur rapidly, FFA may play a role in the development of continued regional hyperperfusion and deteriorate microvascular function. [source]


Free fatty acids in obesity and type 2 diabetes: defining their role in the development of insulin resistance and ,-cell dysfunction

EUROPEAN JOURNAL OF CLINICAL INVESTIGATION, Issue 2002
G. Boden
Abstract Plasma free fatty acids (FFA) play important physiological roles in skeletal muscle, heart, liver and pancreas. However, chronically elevated plasma FFA appear to have pathophysiological consequences. Elevated FFA concentrations are linked with the onset of peripheral and hepatic insulin resistance and, while the precise action in the liver remains unclear, a model to explain the role of raised FFA in the development of skeletal muscle insulin resistance has recently been put forward. Over 30 years ago, Randle proposed that FFA compete with glucose as the major energy substrate in cardiac muscle, leading to decreased glucose oxidation when FFA are elevated. Recent data indicate that high plasma FFA also have a significant role in contributing to insulin resistance. Elevated FFA and intracellular lipid appear to inhibit insulin signalling, leading to a reduction in insulin-stimulated muscle glucose transport that may be mediated by a decrease in GLUT-4 translocation. The resulting suppression of muscle glucose transport leads to reduced muscle glycogen synthesis and glycolysis. In the liver, elevated FFA may contribute to hyperglycaemia by antagonizing the effects of insulin on endogenous glucose production. FFA also affect insulin secretion, although the nature of this relationship remains a subject for debate. Finally, evidence is discussed that FFA represent a crucial link between insulin resistance and ,-cell dysfunction and, as such, a reduction in elevated plasma FFA should be an important therapeutic target in obesity and type 2 diabetes. [source]