Asthmatic Airway Inflammation (asthmatic + airway_inflammation)

Distribution by Scientific Domains


Selected Abstracts


Role of chemokines in asthmatic airway inflammation

IMMUNOLOGICAL REVIEWS, Issue 1 2000
Nicholas W. Lukacs
First page of article [source]


Suppression of allergic airway inflammation in a mouse model by Der p2 recombined BCG

IMMUNOLOGY, Issue 1pt2 2009
Hai-Feng Ou-Yang
Summary Allergic asthma is a chronic inflammatory disease mediated by T helper (Th)2 cell immune responses. Currently, immunotherapies based on both immune deviation and immune suppression, including the development of recombinant mycobacteria as immunoregulatory vaccines, are attractive treatment strategies for asthma. In our previous studies, we created a genetically recombinant form of bacille Calmette,Guerin (rBCG) that expressed Der p2 of house dust mites and established that it induced a shift from a Th2 response to a Th1 response in naive mice. However, it is unclear whether rBCG could suppress allergic airway inflammation in a mouse model. In this article we report that rBCG dramatically inhibited airway inflammation, eosinophilia, mucus production and mast cell degranulation in allergic mice. Analysis of interferon-, (IFN-,) and interleukin-4 (IL-4) levels in bronchoalveolar lavage fluid (BALF) and lung tissue revealed that the suppression was associated with a shift from a Th2 response to a Th1 response. At the same time, rBCG induced a CD4+ CD25+ Foxp3+ T-cell subtype that could suppress the proliferation of Th2 effector cells in vitro in an antigen-specific manner. Moreover, suppression of CD4+ CD25+ T cells could be adoptively transferred. Thus, our results demonstrate that rBCG induces both generic and specific immune responses. The generic immune response is associated with a shift from a Th2 to a Th1 cytokine response, whereas the specific immune response against Der p2 appears to be related to the expansion of transforming growth factor-, (TGF-,)-producing CD4+ CD25+ Foxp3+ regulatory T cells. rBCG can suppress asthmatic airway inflammation through both immune deviation and immune suppression and may be a feasible, efficient immunotherapy for asthma. [source]


Inflammatory and oxidative stress biomarkers in allergic rhinitis: the effect of smoking

CLINICAL & EXPERIMENTAL ALLERGY, Issue 3 2009
K. Tanou
Summary Background Accumulating evidence confirms the presence of pan-airway inflammation in allergic rhinitis patients. Smoking is known to affect the asthmatic airway inflammation. However, no study has evaluated the impact of smoking on airway inflammation of allergic rhinitis patients. Objective The aim of the present study was to evaluate the impact of smoking on inflammatory and oxidative stress biomarkers in patients with seasonal allergic rhinitis, using non-invasive methods for sample collection. Methods Forty patients with seasonal allergic rhinitis (20 smokers and 20 non-smokers) and 30 healthy subjects (15 smokers and 15 non-smokers) were recruited for the study during pollen season. All subjects were submitted to measurement of the fraction of exhaled NO (FeNO), exhaled breath condensate (EBC) collection, nasal lavage collection, pre- and post- bronchodilation spirometry and metacholine bronchial challenge testing. pH, leukotriene B4 (LTB4) and 8-isoprostane were determined in EBC and nasal lavage samples. Results Patients with allergic rhinitis presented higher LTB4 and 8-isoprostane levels in nasal lavage (P<0.0001 for both comparisons), with no significant differences between smokers and non-smokers. Patients with allergic rhinitis also presented higher LTB4 levels and lower pH in EBC (P<0.001 and P=0.004, respectively), with prominent differences between smokers and non-smokers (P<0.0001 and P=0.003, for LTB4 and pH, respectively). A significant correlation between nasal lavage and EBC LTB4 values was observed (rs=0.313, P=0.048). Conclusions Patients with allergic rhinitis present increased LTB4 and 8-isoprostane in their nasal cavity, however, with no significant differences between smokers and non-smokers. In contrast, smokers with allergic rhinitis present higher LTB4 levels and lower pH in EBC, suggesting that these patients may be more susceptible to the deleterious effects of smoking, compared with non-smokers. [source]


Airway cell and cytokine changes in early asthma deterioration after inhaled corticosteroid reduction

CLINICAL & EXPERIMENTAL ALLERGY, Issue 8 2007
Y. H. Khor
Summary Background Back-titration of inhaled corticosteroid (ICS) dose in well-controlled asthma patients is emphasized in clinical guidelines, but there are few published data on the airway cell and cytokine changes in relation to ICS reduction. In our study, 20 mild-to-moderate persistent (inspite of low-moderate dose ICS treatment) asthmatic subjects prospectively rendered largely asymptomatic by high-dose ICS were assessed again by clinical, physiological, and airway inflammatory indices after 4,8 weeks of reduced ICS treatment. We aimed at assessing the underlying pathological changes in relation to clinical deterioration. Methods Patients recorded daily symptom scores and peak expiratory flows (PEF). Spirometry and airways hyperreactivity (AHR) were measured and bronchoscopy was performed with assessment of airway biopsies (mast cells, eosinophils, neutrophils, and T lymphoctyes), bronchoalveolar lavage (BAL) IL-5 and eotaxin levels and cellular profiles at the end of high-dose ICS therapy and again after ICS dose reduction. Baseline data were compared with symptomatic steroid-free asthmatics (n=42) and non-asthmatic controls (n=28). Results After ICS reduction, subjects experienced a variable but overall significant increase in symptoms and reductions in PEF and forced expiratory volume in 1 s. There were no corresponding changes in AHR or airways eosinophilia. The most relevant pathogenic changes were increased CD4+/CD8+ T cell ratio, and decreased sICAM-1 and CD18 macrophage staining (potentially indicating ligand binding). However, there was no relationship between the spectrum of clinical deterioration and the changes in cellular profiles or BAL cytokines. Conclusions These data suggest that clinical markers remain the most sensitive measures of early deterioration in asthma during back-titration of ICS, occurring at a time when AHR and conventional indices of asthmatic airway inflammation appear unchanged. These findings have major relevance to management and to how back-titration of ICS therapy is monitored. [source]