Aspartate Amino Transferase (aspartate + amino_transferase)

Distribution by Scientific Domains


Selected Abstracts


Effect of vitamin C on oxidative liver injury due to isoniazid in rats

PEDIATRICS INTERNATIONAL, Issue 1 2010
Yakup Ergul
Abstract Background:, The aim of the present study was to investigate the effect of different doses of vitamin C on oxidative liver injury due to isoniazid (INH) in rats. Methods:, Rats were divided into four subgroups, each containing 10 rats. Group 1 was the control group; group 2, INH 50 mg/kg per day; group 3, INH 50 mg/kg per day + low-dose vitamin C (100 mg/kg per day); group 4, INH 50 mg/kg per day + high-dose vitamin C (1000 mg/kg per day). INH and vitamin C were administered into their stomachs through an oral tube. After 21 days, measurements were made in both serum and homogenized liver tissues. The levels of glutathione (GSH), superoxide dismutase (SOD) and other biochemical variables were measured. Malondialdehyde (MDA), glutathione peroxidase (GSH-px) and vitamin C were measured using commercial kits. Results:, Aspartate amino transferase and alanine aminotransferase in group 2 were higher than those in groups 1, 3 and 4 (P < 0.008 for both). Serum and tissue levels of MDA in group 2 were higher than that in groups 1 and 3 (P < 0.008 for both). There was no difference in the SOD levels between the four groups (P= 0.095). Erythrocyte and tissue GSH in group 2 were higher than that in groups 1 and 3 (P < 0.008 for both). Interestingly, erythrocyte and tissue GSH in group 4 were lower than those in group 1 (P < 0.008 for both). Erythrocyte level of GSH-px in group 2 was higher than that in groups 1 and 3 (P < 0.008 for both). Conclusions:, INH-induced liver injury is associated with oxidative stress, and co-administration of low-dose vitamin C may reduce this damage effectively in a rat model. The antioxidant effect of high-dose vitamin C does not seem more potent compared to the low dose. [source]


Mouse toxicity of Anabaena flos-aquae from Lake Dianchi, China

ENVIRONMENTAL TOXICOLOGY, Issue 1 2009
Xiaojie Pan
Abstract Some species of the genera Anabaena can produce various kinds of cyanotoxins, which may pose risks to environment and human health. Anabaena has frequently been observed in eutrophic freshwater of China in recent years, but its toxicity has been reported only in a few studies. In the present study, the toxicity of an Anabaena flos-aquae strain isolated from Lake Dianchi was investigated. Acute toxicity testing was performed by mouse bioassay using crude extracts from the lyophilized cultures. The mice exposed to crude extracts showed visible symptoms of toxicity and died within 10,24 h of the injection. Serum biochemical parameters were evaluated by the use of commercial diagnostic kits. Significant alterations were found in the serum biochemical parameters: alkaline phosphatase (AKP), ,-glutamyl transpeptidase (,-GT), aspartate amino transferase (AST), alanine amino transferase (ALT), AST/ALT ratio, total protein content, albumin content, albumin/globulin (A/G) ratio, blood urea nitrogen (BUN), serum creatinine (Ssr), and total antioxidative capacity (T-AOC). Histopathological observations were carried out with hematoxylin and eosin (HE) stain under light microscope. Severe lesions were seen in the livers, kidneys, and lungs of the mice injected with crude extracts. The alterations of biochemical parameters were in a dose-dependent manner, and the severities of histological lesions were in the same manner. Based on biochemical and histological studies, this research firstly shows the presence of toxin-producing Anabaena species in Lake Dianchi and the toxic effects of its crude extracts on mammals. © 2008 Wiley Periodicals, Inc. Environ Toxicol, 2009. [source]


Population genetic studies of hilsa shad, Tenualosa ilisha (Hamilton), in Bangladesh waters: evidence for the existence of separate gene pools

FISHERIES MANAGEMENT & ECOLOGY, Issue 5 2000
M. Rahman
Hilsa shad, Tenualosa ilisha (Hamilton), in Bangladesh is found in inland rivers, estuaries and the marine environment, throughout the year, but the peak catch period is during upstream migration. Tissue (white muscle, liver, brain) samples (total 640 specimens) were collected from three different localities, representing marine, brackish and fresh water, during the monsoon in the summer of the years 1993,1996 to identify genetic markers and study the population structure of this species. The samples were analysed by starch gel electrophoresis and isoelectric focusing, and stained for 15 enzymes and general muscle proteins. Only phosphoglucomutase, aspartate amino transferase, esterase and unidentified muscle proteins were found to be polymorphic. The allele frequencies for the samples collected in the marine environment deviated from corresponding samples from freshwater and estuarine localities, indicating that hilsa shad in Bangladesh waters comprise more than one gene pool. [source]


Ethanol Self-Administration and Alterations in the Livers of the Cynomolgus Monkey, Macaca fascicularis

ALCOHOLISM, Issue 1 2007
Priscilla Ivester
Background: Most of the studies of alcoholic liver disease use models in which animals undergo involuntary administration of high amounts of ethanol and consume diets that are often high in polyunsaturated fatty acids. The objectives of this study were (1) to evaluate whether cynomolgus monkeys (Macaca fascicularis) drinking ethanol voluntarily and consuming a diet with moderate amounts of lipid would demonstrate any indices of alcoholic liver disease past the fatty liver stage and (2) to determine whether these alterations were accompanied by oxidative stress. Methods: Six adult male and 6 adult female cynomolgus monkeys were allowed to consume ethanol voluntarily for 18 to 19 months. Additional monkeys were maintained on the same consumption protocol, but were not provided with ethanol. During the course of the study, liver biopsy samples were monitored for lipid deposition and inflammation, serum for levels of liver enzymes, and urine for concentrations of the isoprostane (IsoP) metabolite, 2,3-dinor-5,6-dihydro-15-F2t -IsoP, a biomarker for oxidative stress. Liver mitochondria were monitored for respiratory control and liver for concentrations of neutral lipids, adenine nucleotides, esterified F2 isoprostanes, oxidized proteins, 4-hydroxynonenal (HNE)-protein adducts, and protein levels of cytochrome P-450 2E1 and 3A4. Results: Ethanol consumption ranged from 0.9 to 4.05 g/kg/d over the period of the study. Serum levels of aspartate amino transferase were elevated in heavy-consuming animals compared with those in ethanol-naïve or moderate drinkers. Many of the ethanol consumers developed fatty liver and most showed loci of inflammation. Both hepatic energy charge and phosphorylation potential were decreased and NADH-linked respiration was slightly, but significantly depressed in coupled mitochondria as a result of heavy ethanol consumption. The urinary concentrations of 2,3-dinor-5,6-dihydro-15-F2t -IsoP increased as high as 33-fold over that observed in ethanol-abstinent animals. Liver cytochrome P-450 2E1 concentrations increased in ethanol consumers, but there were no ethanol-elicited increases in hepatic concentrations of the esterified F2 isoprostanes, oxidized proteins, or HNE-protein adducts. Conclusion: Our studies show that cynomolgus monkeys undergoing voluntary ethanol consumption for 1.5 years exhibit many of the features observed in the early stages of human alcoholic liver disease. Ethanol-elicited fatty liver, inflammation, and elevated serum aspartate amino transferase were evident with a diet that contained modest amounts of polyunsaturated lipids. The dramatic increases in urinary IsoP demonstrated that the animals were being subjected to significant oxidative stress that correlated with their level of ethanol consumption. [source]


Murine glutathione S -transferase A1-1 in sickle transgenic mice

AMERICAN JOURNAL OF HEMATOLOGY, Issue 10 2007
Yelena Z. Ginzburg
Patients with sickle cell anemia exhibit mild to moderate renal and liver damage. Glutathione S -transferase A1-1 is produced during kidney and liver damage. We hypothesized that cellular damage in sickle transgenic mice would lead to increased serum and urine murine glutathione S -transferase A1-1 levels. Levels of murine glutathione S -transferase A1-1 in the serum and urine of S+S-Antilles, NY1DD, and control mice were measured by ELISA, which revealed that the serum of S+S-Antilles mice, relative to controls, had elevated levels of murine glutathione S -transferase A1-1 (P = 0.005) as did NY1DD mice (P = 0.02, baseline vs. 2-day hypoxia). Serum liver enzymes, such as aspartate amino transferase and alanine amino transferase, as well as lactate dehydrogenase were increased in S+S-Antilles mice relative to controls (P = 0.000006, P = 0.0003, and P = 0.029, respectively). Urine murine glutathione S -transferase A1-1 of S+S-Antilles mice, as well as NY1DD mice under hypoxic stress, was not significantly different from controls. Murine glutathione S -transferase class-mu was measured by ELISA in the urine of sickle transgenic mice and control mice to define the location of tubular damage at the proximal convoluted tubule; murine Glutathione S -transferase class-mu was below the limit of detection. These findings suggest that elevated levels of murine glutathione S -transferase A1-1 in the serum reflect release during liver damage and that proximal tubular damage does not lead to appreciable urinary murine glutathione S -transferase A1-1. Am. J. Hematol. 82:911,915, 2007. © 2007 Wiley-Liss, Inc. [source]