Asexual Organisms (asexual + organism)

Distribution by Scientific Domains


Selected Abstracts


Genetic variation in organisms with sexual and asexual reproduction

JOURNAL OF EVOLUTIONARY BIOLOGY, Issue 2 2003
B. O. Bengtsson
Abstract The genetic variation in a partially asexual organism is investigated by two models suited for different time scales. Only selectively neutral variation is considered. Model 1 shows, by the use of a coalescence argument, that three sexually derived individuals per generation are sufficient to give a population the same pattern of allelic variation as found in fully sexually reproducing organisms. With less than one sexual event every third generation, the characteristic pattern expected for asexual organisms appear, with strong allelic divergence between the gene copies in individuals. At intermediary levels of sexuality, a complex situation reigns. The pair-wise allelic divergence under partial sexuality exceeds, however, always the corresponding value under full sexuality. These results apply to large populations with stable reproductive systems. In a more general framework, Model 2 shows that a small number of sexual individuals per generation is sufficient to make an apparently asexual population highly genotypically variable. The time scale in terms of generations needed to produce this effect is given by the population size and the inverse of the rate of sexuality. [source]


Can phosphorus limitation contribute to the maintenance of sex?

JOURNAL OF EVOLUTIONARY BIOLOGY, Issue 6 2009
A test of a key assumption
Abstract Why sex is so common remains unclear; what is certain is that the predominance of sex despite its profound costs means that it must confer major advantages. Here, we use elemental and nucleic acid assays to evaluate a key element of a novel, integrative hypothesis considering whether sex might be favoured because of differences in body composition between sexuals and asexuals. We found that asexual Potamopyrgus antipodarum, a New Zealand snail, have markedly higher bodily phosphorus and nucleic acid content per unit mass than sexual counterparts. These differences coincide with and are almost certainly linked to the higher ploidy of the asexuals. Our results are the first documented body composition differences between sexual and asexual organisms, and the first detected phenotypic difference between sexual and asexual P. antipodarum, an important natural model system for the study of the maintenance of sex. These findings also verify a central component of our hypothesis that competition between diploid sexuals and polyploid asexuals could be influenced by phosphorus availability. [source]


Genetic variation in organisms with sexual and asexual reproduction

JOURNAL OF EVOLUTIONARY BIOLOGY, Issue 2 2003
B. O. Bengtsson
Abstract The genetic variation in a partially asexual organism is investigated by two models suited for different time scales. Only selectively neutral variation is considered. Model 1 shows, by the use of a coalescence argument, that three sexually derived individuals per generation are sufficient to give a population the same pattern of allelic variation as found in fully sexually reproducing organisms. With less than one sexual event every third generation, the characteristic pattern expected for asexual organisms appear, with strong allelic divergence between the gene copies in individuals. At intermediary levels of sexuality, a complex situation reigns. The pair-wise allelic divergence under partial sexuality exceeds, however, always the corresponding value under full sexuality. These results apply to large populations with stable reproductive systems. In a more general framework, Model 2 shows that a small number of sexual individuals per generation is sufficient to make an apparently asexual population highly genotypically variable. The time scale in terms of generations needed to produce this effect is given by the population size and the inverse of the rate of sexuality. [source]


Endosymbiotic origins of sex

BIOESSAYS, Issue 5 2004
Christopher Bazinet
Understanding how complex sexual reproduction arose, and why sexual organisms have been more successful than otherwise similar asexual organisms, is a longstanding problem in evolutionary biology. Within this problem, the potential role of endosymbionts or intracellular pathogens in mediating primitive genetic transfers is a continuing theme. In recent years, several remarkable activities of mitochondria have been observed in the germline cells of complex eukaryotes, and it has been found that bacterial endosymbionts related to mitochondria are capable of manipulating diverse aspects of metazoan gametogenesis. An attempt is made here to rationalize these observations with an endosymbiotic model for the evolutionary origins of sex. It is hypothesized that the contemporary life cycle of germline cells has descended from the life cycle of the endosymbiotic ancestor of the mitochondrion. Through an actin-based motility that drove it from one cell to another, the rickettsial ancestor of mitochondria may have functioned as a primitive transducing particle, the evolutionary progenitor of sperm. BioEssays 26:558,566, 2004. 2004 Wiley Periodicals, Inc. [source]