Home About us Contact | |||
Ascertainment Scheme (ascertainment + scheme)
Selected AbstractsPEL: an unbiased method for estimating age-dependent genetic disease risk from pedigree data unselected for family historyGENETIC EPIDEMIOLOGY, Issue 5 2009F. Alarcon Abstract Providing valid risk estimates of a genetic disease with variable age of onset is a major challenge for prevention strategies. When data are obtained from pedigrees ascertained through affected individuals, an adjustment for ascertainment bias is necessary. This article focuses on ascertainment through at least one affected and presents an estimation method based on maximum likelihood, called the Proband's phenotype exclusion likelihood or PEL for estimating age-dependent penetrance using disease status and genotypic information of family members in pedigrees unselected for family history. We studied the properties of the PEL and compared with another method, the prospective likelihood, in terms of bias and efficiency in risk estimate. For that purpose, family samples were simulated under various disease risk models and under various ascertainment patterns. We showed that, whatever the genetic model and the ascertainment scheme, the PEL provided unbiased estimates, whereas the prospective likelihood exhibited some bias in a number of situations. As an illustration, we estimated the disease risk for transthyretin amyloid neuropathy from a French sample and a Portuguese sample and for BRCA1/2 associated breast cancer from a sample ascertained on early-onset breast cancer cases. Genet. Epidemiol. 33:379,385, 2009. © 2008 Wiley-Liss, Inc. [source] Testing association in the presence of linkage , a powerful score for binary traitsGENETIC EPIDEMIOLOGY, Issue 6 2007Gudrun Jonasdottir Abstract We present a score for testing association in the presence of linkage for binary traits. The score is robust to varying degrees of linkage, and it is valid under any ascertainment scheme based on trait values as well as under population stratification. The score test is derived from a mixed effects model where population level association is modeled using a fixed effect and where correlation among related individuals is allowed for by using log-gamma random effects. The score, as presented in this paper, does not assume full information about the inheritance pattern in families or parental genotypes. We compare the score to the semi-parametric family-based association test (FBAT), which has won ground because of its flexible and simple form. We show that a random effects formulation of co-inheritance can improve the power substantially. We apply the method to data from the Collaborative Study on the Genetics of Alcoholism. We compare our findings to previously published results. Genet. Epidemiol. 2007. © 2007 Wiley-Liss, Inc. [source] Score Statistic to Test for Genetic Correlation for Proband-Family DesignANNALS OF HUMAN GENETICS, Issue 4 2005R. El Galta Summary In genetic epidemiological studies informative families are often oversampled to increase the power of a study. For a proband-family design, where relatives of probands are sampled, we derive the score statistic to test for clustering of binary and quantitative traits within families due to genetic factors. The derived score statistic is robust to ascertainment scheme. We considered correlation due to unspecified genetic effects and/or due to sharing alleles identical by descent (IBD) at observed marker locations in a candidate region. A simulation study was carried out to study the distribution of the statistic under the null hypothesis in small data-sets. To illustrate the score statistic, data from 33 families with type 2 diabetes mellitus (DM2) were analyzed. In addition to the binary outcome DM2 we also analyzed the quantitative outcome, body mass index (BMI). For both traits familial aggregation was highly significant. For DM2, also including IBD sharing at marker D3S3681 as a cause of correlation gave an even more significant result, which suggests the presence of a trait gene linked to this marker. We conclude that for the proband-family design the score statistic is a powerful and robust tool for detecting clustering of outcomes. [source] Candidate-gene association studies with pedigree data: Controlling for environmental covariatesGENETIC EPIDEMIOLOGY, Issue 4 2003S.L. Slager Abstract Case-control studies provide an important epidemiological tool to evaluate candidate genes. There are many different study designs available. We focus on a more recently proposed design, which we call a multiplex case-control (MCC) design. This design compares allele frequencies between related cases, each of whom are sampled from multiplex families, and unrelated controls. Since within-family genotype correlations will exist, statistical methods will need to take this into account. Moreover, there is a need to develop methods to simultaneously control for potential confounders in the analysis. Generalized estimating equations (GEE) are one approach to analyze this type of data; however, this approach can have singularity problems when estimating the correlation matrix. To allow for modeling of other covariates, we extend our previously developed method to a more general model-based approach. Our proposed methods use the score statistic, derived from a composite likelihood. We propose three different approaches to estimate the variance of this statistic. Under random ascertainment of pedigrees, score tests have correct type I error rates; however, pedigrees are not randomly ascertained. Thus, through simulations, we test the validity and power of the score tests under different ascertainment schemes, and an illustration of our methods, applied to data from a prostate cancer study, is presented. We find that our robust score statistic has estimated type I error rates within the expected range for all situations we considered whereas the other two statistics have inflated type I error rates under nonrandom ascertainment schemes. We also find GEE to fail at least 5% of the time for each simulation configuration; at times, the failure rate reaches above 80%. In summary, our robust method may be the only current regression analysis method available for MCC data. Genet Epidemiol 24:273,283, 2003. © 2003 Wiley-Liss, Inc. [source] |