Pig Lines (pig + line)

Distribution by Scientific Domains


Selected Abstracts


Effect of Polymorphisms in Four Candidate Genes for Fertility on Litter Size in a German Pig Line

REPRODUCTION IN DOMESTIC ANIMALS, Issue 4 2010
A Spötter
Contents We carried out an SNP discovery project in pigs for candidate genes playing potentially important roles in embryonic development. Using eight pigs one each from eight breeds (Meishan, Mangalitza, Duroc, Pietrain, German Landrace, Hampshire, Husum Red Pied, German Large White), 36 SNPs were identified in intronic sequences of 21 porcine candidate genes based on sequencing of PCR products. The primer pairs were designed using porcine EST sequences allowing amplification of introns. These SNPs were tested for their association with the number of piglets born alive in German Large White sows using a discordant approach. Significant effects (p < 0.001 and p < 0.05, respectively) of intronic SNPs on litter size were found for four genes: mitogen-activated protein kinase kinase kinase 3 (MAP3K3), vascular endothelial growth factor receptor (KDR), erbb2 interacting protein (ERBB2IP) and peroxisome proliferator-activated receptor delta (PPARD). These SNPs can be further tested in upcoming association studies for their influence on litter size in different breeds using larger sample sizes. [source]


The cholecystokinin type A receptor g.179A>G polymorphism affects feeding rate

ANIMAL GENETICS, Issue 2 2008
R. D. Houston
Summary A polymorphism within the 5, untranslated region of the cholecystokinin type A receptor (CCKAR) gene has been shown to affect feed intake and growth in commercial pig lines. To further investigate the phenotype of animals carrying alternative alleles at this polymorphism, we genotyped animals from a distinct segregating commercial line and an experimental cross F2 population, both with electronically recorded feeding pattern data. The data indicate that the daily feed intake increasing effect of the DQ496228:g.179G allele is mediated through a faster rate of feed intake, without evidence for an effect on other feeding behaviour traits. [source]


Quantitative trait loci associated with AutoFOM grading characteristics, carcass cuts and chemical body composition during growth of Sus scrofa

ANIMAL GENETICS, Issue 5 2006
M. Mohrmann
Summary A three-generation full-sib resource family was constructed by crossing two commercial pig lines. Genotypes for 37 molecular markers covering chromosomes SSC1, SSC6, SSC7 and SSC13 were obtained for 315 F2 animals of 49 families and their parents and grandparents. Phenotypic records of traits including carcass characteristics measured by the AutoFOM grading system, dissected carcass cuts and meat quality characteristics were recorded at 140 kg slaughter weight. Furthermore, phenotypic records on live animals were obtained for chemical composition of the empty body, protein and lipid accretion (determined by the deuterium dilution technique), daily gain and feed intake during the course of growth from 30 to 140 kg body weight. Quantitative trait loci (QTL) detection was conducted using least-squares regression interval mapping. Highest significance at the 0.1% chromosome-wise level was obtained for five QTL: AutoFOM belly weight on SSC1; ham lean-meat weight, percentage of fat of primal cuts and daily feed intake between 60 and 90 kg live weight on SSC6; and loin lean-meat weight on SSC13. QTL affecting daily gain and protein accretion were found on SSC1 in the same region. QTL for protein and lipid content of empty body at 60 kg liveweight were located close to the ryanodine receptor 1 (RYR1) locus on SSC6. On SSC13, significant QTL for protein accretion and feed conversion ratio were detected during growth from 60 to 90 kg. In general, additive genetic effects of alleles originating from the Piétrain line were associated with lower fatness and larger muscularity as well as lower daily gain and lower protein accretion rates. Most of the QTL for carcass characteristics were found on SSC6 and were estimated after adjustment for the RYR1 gene. QTL for carcass traits, fatness and growth on SSC7 reported in the literature, mainly detected in crosses of commercial lines × obese breeds, were not obtained in the present study using crosses of only commercial lines, suggesting that these QTL are not segregating in the analysed commercial lines. [source]


SLA typing using the PCR-SSP method and establishment of the SLA homozygote line in pedigreed SNU miniature pigs

ANIMAL SCIENCE JOURNAL, Issue 2 2010
Su-Cheong YEOM
ABSTRACT Seoul National University (SNU) miniature pigs represent a closed colony with 24 founder pigs and a well preserved pedigree. Characterization using mRNA sequence analysis was conducted for 6 swine leukocyte antigen (SLA) loci in parental or founder pigs, and 17 defined alleles were detected. Based on these complete coding sequences, 17 sequence specific primers (SSPs) were designed for polymorphic sites. To validate the specificity of each allele SSP, the PCR-SSP was conducted with defined allele clones as templates. PCR-SSP was conducted with the hot start polymerase and touch-down PCR. The parental or found SNU miniature pigs showed overall SLA class I and II heterozygotes. Using the established PCR-SSP method, we conducted SLA typing for breeding stock including 2 pedigreed pigs and identified the novel SLA class II homozygote haplotye (DRA*0201, DRB1*0403, DQA*0102 and DQB1*0701) and 2 SLA homozygote pig lines: SLA class I Hp-3.0 and class II Hp-0.3, and SLA class I Hp-2.0 and class II Hp-0.2. We thought that our PCR-SSP SLA typing method could be applicable for new SLA homozygote line establishment by assignment and scheduled breeding. [source]