Home About us Contact | |||
Physiological Pathways (physiological + pathway)
Selected AbstractsBacterial pathogens and the autophagic responseCELLULAR MICROBIOLOGY, Issue 1 2010María C. Lerena Summary The host cell recognition and removal of invading pathogens are crucial for the control of microbial infections. However, several microorganisms have developed mechanisms that allow them to survive and replicate intracellularly. Autophagy is an ubiquitous physiological pathway in eukaryotic cells, which maintains the cellular homeostasis and acts as a cell quality control mechanism to eliminate aged organelles and unnecessary structures. In addition, autophagy has an important role as a housekeeper since cells that have to get rid of invading pathogens use this pathway to assist this eradication. In this review we will summarize some strategies employed by bacterial pathogens to modulate autophagy to their own benefit and, on the other hand, the role of autophagy as a protective process of the host cell. In addition, we will discuss here recent studies that show the association of LC3 to a pathogen-containing compartment without a classical autophagic sequestering process (i.e. formation of a double membrane structure). [source] Restoration of DNA-binding and growth-suppressive activity of mutant forms of p53 via a PCAF-mediated acetylation pathway,JOURNAL OF CELLULAR PHYSIOLOGY, Issue 2 2010Ricardo E. Perez Tumor-derived mutant forms of p53 compromise its DNA binding, transcriptional, and growth regulatory activity in a manner that is dependent upon the cell-type and the type of mutation. Given the high frequency of p53 mutations in human tumors, reactivation of the p53 pathway has been widely proposed as beneficial for cancer therapy. In support of this possibility p53 mutants possess a certain degree of conformational flexibility that allows for re-induction of function by a number of structurally different artificial compounds or by short peptides. This raises the question of whether physiological pathways for p53 mutant reactivation also exist and can be exploited therapeutically. The activity of wild-type p53 is modulated by various acetyl-transferases and deacetylases, but whether acetylation influences signaling by p53 mutant is still unknown. Here, we show that the PCAF acetyl-transferase is down-regulated in tumors harboring p53 mutants, where its re-expression leads to p53 acetylation and to cell death. Furthermore, acetylation restores the DNA-binding ability of p53 mutants in vitro and expression of PCAF, or treatment with deacetylase inhibitors, promotes their binding to p53-regulated promoters and transcriptional activity in vivo. These data suggest that PCAF-mediated acetylation rescues activity of at least a set of p53 mutations. Therefore, we propose that dis-regulation of PCAF activity is a pre-requisite for p53 mutant loss of function and for the oncogenic potential acquired by neoplastic cells expressing these proteins. Our findings offer a new rationale for therapeutic targeting of PCAF activity in tumors harboring oncogenic versions of p53. J. Cell. Physiol. 225: 394,405, 2010. © 2010 Wiley-Liss, Inc. [source] The influence of common gene variants of the xenobiotic receptor (PXR) in genetic susceptibility to intrahepatic cholestasis of pregnancyALIMENTARY PHARMACOLOGY & THERAPEUTICS, Issue 5 2010G. CASTAÑO Aliment Pharmacol Ther,31, 583,592 Summary Background, The xenobiotic nuclear pregnane X receptor is implicated in many physiological pathways and diseases, including bile acid detoxification and cholestasis. Aim, To estimate the contribution of common gene variants of the xenobiotic receptor (pregnane X receptor, PXR) to genetic susceptibility to intrahepatic cholestasis of pregnancy. Methods, A total of 101 intrahepatic cholestasis of pregnancy patients and 171 healthy pregnant women in the third trimester of their pregnancies were included. Four tag single nucleotide polymorphisms (SNPs) (rs12488820 C/T, rs2472671 C/T, rs2461823 A/G, and rs1054191 A/G) encompassing 36 kb in chromosome 3, with a minor allele frequency ,0.10 and representing 33 polymorphic sites were genotyped. Besides these, three additional SNPs (rs3814057, rs6785049, and rs7643645) were included because they showed previous evidence of functionality. Results, Genotypic test for single SNPs showed that rs2461823 genotypes were significantly associated with intrahepatic cholestasis of pregnancy (P < 0.0069), OR per G allele: 1.44, 95% CI: 1.01,2.05, P < 0.042. The Cochran-Armitage test for trend and the allelic test showed a significant association with disease status (P < 0.04 and 0.03 respectively), G being the risk allele. A positive association between rs2461823 and ALT, AST, and bilirubin concentrations was observed. Neonate birth weight adjusted by the Capurro index was significantly associated with rs2461823 (P < 0.05); the proportion of the total variation attributed to rs2461823 genotypes was 7.8%. Conclusion, Common PXR polymorphisms may contribute to the genetic susceptibility to intrahepatic cholestasis of pregnancy. [source] Epigenetic effects of infection on the phenotype of host offspring: parasites reaching across host generationsOIKOS, Issue 3 2008Robert Poulin Parasite-induced changes in host phenotype are now well-documented from a wide range of taxa. There is a growing body of evidence indicating that parasites can also have trans-generational consequences, with infection of a host leading to changes in the phenotype of its offspring, though the latter are not parasitised. Several proximate mechanisms have been put forward to explain these ,maternal' effects, most involving hormonal or other physiological pathways, ultimately leading to offspring that are pre-adapted to the parasites they are most likely to encounter based on their mother's experience. Here, we propose that all these trans-generational effects on offspring phenotype must involve epigenetic phenomena. Epigenetics concerns the appearance and inheritance of seemingly new phenotypic traits without changes in the underlying DNA sequence. Since diet and other environmental factors experienced by a mother can affect gene expression in her offspring by turning genes ,on' or ,off' (for example, via DNA methylation), why couldn't parasites do it? Although epigenetic effects have not been explicitly invoked to account for trans-generational impacts of parasites on the phenotype of host offspring, the existing evidence is fully compatible with their involvement. We argue that epigenetic mechanisms must play a central role; we also discuss their evolutionary implications and suggest questions for future investigations in this new and exciting research direction. [source] Non-stress-related factors associated with maternal corticotrophin-releasing hormone (CRH) concentrationPAEDIATRIC & PERINATAL EPIDEMIOLOGY, Issue 4 2010Michael S. Kramer Summary Kramer MS, Lydon J, Séguin L, Goulet L, Kahn SR, McNamara H, Genest J, Sharma S, Meaney MJ, Libman M, Dahhou M, Platt RW. Non-stress-related factors associated with maternal corticotrophin-releasing hormone (CRH) concentration. Paediatric and Perinatal Epidemiology 2010. During pregnancy, most maternal corticotrophin-releasing hormone (CRH) is secreted by the placenta, not the hypothalamus. Second trimester maternal CRH concentration is robustly associated with the subsequent risk of preterm birth, and it is often assumed that physiological and/or psychological stress stimulates placental CRH release. Evidence supporting the latter assumption is weak, however, and other factors affecting maternal CRH have received little attention from investigators. We carried out a case,control study nested within a large, multicentre prospective cohort of pregnant women to examine potential ,upstream' factors associated with maternal CRH concentration measured at 24,26 weeks of gestation. The predictors studied included maternal age, parity, birthplace (as a proxy for ethnic origin), pre-pregnancy body mass index, height, smoking, bacterial vaginosis and vaginal fetal fibronectin (FFN) concentration. Women with high (above the median) plasma CRH concentration were significantly less likely to have been born in Sub-Saharan Africa or the Caribbean, less likely to be overweight or obese, and more likely to be smokers. Associations with maternal birthplace and BMI persisted in logistic regression analyses controlling for potential confounding variables and when restricted to term controls. A strong (but imprecise and statistically non-significant) association was also observed with high vaginal FFN concentration. Further studies are indicated both in animal models and human populations to better understand the biochemical and physiological pathways to CRH secretion and their aetiological role, if any, in preterm birth. [source] Crystallization of the plant hormone receptors PYL9/RCAR1, PYL5/RCAR8 and PYR1/RCAR11 in the presence of (+)-abscisic acidACTA CRYSTALLOGRAPHICA SECTION F (ELECTRONIC), Issue 4 2010Nobuyuki Shibata Abscisic acid (ABA) is a plant hormone that plays key regulatory roles in physiological pathways for the adaptation of vegetative tissues to abiotic stresses such as water stress in addition to events pertaining to plant growth and development. The Arabidopsis ABA receptor proteins PYR/PYLs/RCARs form a START family that contains 14 members which are classified into three subfamilies (I,III). Here, purification, crystallization and X-ray data collection are reported for a member of each of the subfamilies, PYL9/RCAR1 from subfamily I, PYL5/RCAR8 from subfamily II and PYR1/RCAR11 from subfamily III, in the presence of (+)-abscisic acid. The three proteins crystallize in space groups P3121/P3221, P2 and P1, respectively. X-ray intensity data were collected to 1.9,2.6,Å resolution. [source] |