Physiological Functions (physiological + function)

Distribution by Scientific Domains
Distribution within Life Sciences

Kinds of Physiological Functions

  • many physiological function
  • other physiological function
  • several physiological function
  • various physiological function


  • Selected Abstracts


    A New Chemical Tool for Exploring the Physiological Function of the PDE2 Isozyme.

    CHEMINFORM, Issue 15 2006
    Robert J. Chambers
    Abstract ChemInform is a weekly Abstracting Service, delivering concise information at a glance that was extracted from about 200 leading journals. To access a ChemInform Abstract, please click on HTML or PDF. [source]


    Physiological functions of glucose-inhibited neurones

    ACTA PHYSIOLOGICA, Issue 1 2009
    D. Burdakov
    Abstract Glucose-inhibited neurones are an integral part of neurocircuits regulating cognitive arousal, body weight and vital adaptive behaviours. Their firing is directly suppressed by extracellular glucose through poorly understood signalling cascades culminating in opening of post-synaptic K+ or possibly Cl, channels. In mammalian brains, two groups of glucose-inhibited neurones are best understood at present: neurones of the hypothalamic arcuate nucleus (ARC) that express peptide transmitters NPY and agouti-related peptide (AgRP) and neurones of the lateral hypothalamus (LH) that express peptide transmitters orexins/hypocretins. The activity of ARC NPY/AgRP neurones promotes food intake and suppresses energy expenditure, and their destruction causes a severe reduction in food intake and body weight. The physiological actions of ARC NPY/AgRP cells are mediated by projections to numerous hypothalamic areas, as well as extrahypothalamic sites such as the thalamus and ventral tegmental area. Orexin/hypocretin neurones of the LH are critical for normal wakefulness, energy expenditure and reward-seeking, and their destruction causes narcolepsy. Orexin actions are mediated by highly widespread central projections to virtually all brain areas except the cerebellum, including monosynaptic innervation of the cerebral cortex and autonomic pre-ganglionic neurones. There, orexins act on two specific G-protein-coupled receptors generally linked to neuronal excitation. In addition to sensing physiological changes in sugar levels, the firing of both NPY/AgRP and orexin neurones is inhibited by the ,satiety' hormone leptin and stimulated by the ,hunger' hormone ghrelin. Glucose-inhibited neurones are thus well placed to coordinate diverse brain states and behaviours based on energy levels. [source]


    Physiological functions of hemocytes newly emerged from the cultured hematopoietic organs in the silkworm, Bombyx mori

    INSECT SCIENCE, Issue 1 2010
    Cheng-Long Wang
    Abstract, Cellular immunity is a very important part of insect innate immunity. It is not clear if hemocytes entering the hemolymph require a maturation process to become competent. The establishment of a tissue culture system for the insect hematopoietic organs would enable physiological function assays with hemocytes newly emerged from hematopoietic organs. To this end, we established a hematopoietic organ culture system for the purebred silkworm pnd pS and then studied the physiological functions of the newly emerged hemocytes. We found that Grace's medium supplemented with 10% heated silkworm larval plasma was better for culturing the hematopoietic organs of pnd pS. Newly emerged hemocytes phagocytosed propidium iodide-labeled bacteria and encapsulated the Iml-2 coated nickel beads as well as pupal tissue debris. This culture system is therefore capable of generating physiologically functional hemocytes. These hemocytes can be used to study the mechanisms of the hemocyte immune response among others. [source]


    Physiological functions of imprinted genes

    JOURNAL OF CELLULAR PHYSIOLOGY, Issue 3 2002
    Benjamin Tycko
    Genomic imprinting in gametogenesis marks a subset of mammalian genes for parent-of-origin-dependent monoallelic expression in the offspring. Embryological and classical genetic experiments in mice that uncovered the existence of genomic imprinting nearly two decades ago produced abnormalities of growth or behavior, without severe developmental malformations. Since then, the identification and manipulation of individual imprinted genes has continued to suggest that the diverse products of these genes are largely devoted to controlling pre- and post-natal growth, as well as brain function and behavior. Here, we review this evidence, and link our discussion to a website (http://www.otago.ac.nz/IGC) containing a comprehensive database of imprinted genes. Ultimately, these data will answer the long-debated question of whether there is a coherent biological rationale for imprinting. © 2002 Wiley-Liss, Inc. [source]


    Limitations of relaxation kinetics on muscular work

    ACTA PHYSIOLOGICA, Issue 2 2010
    J. McDaniel
    Abstract Aim:, Positive net work produced during cyclic contractions is partially limited by relaxation kinetics, which to date, have not been directly investigated. Therefore, the purpose of this investigation was to determine the influence of relaxation kinetics on cyclic work. Methods:, Soleus muscles of four cats were isolated and subjected to a series of work loops (0.5, 1, 1.5 and 2 Hz cycle frequencies) during which stimulation terminated prior to the end of the shortening phase to allow for complete muscle relaxation and matched discrete sinusoidal shortening contractions during which stimulation remained on until the completion of the shortening phase. Muscle length changes during these protocols were centred on optimum length and were performed across muscle lengths that represented walking gait. Results:, When muscle excursions were centred on Lo relaxation kinetics decreased muscular work by 2.8 ± 0.8%, 12.1 ± 4.1%, 27.9 ± 4.5% and 40.1 ± 5.9% for 0.5, 1, 1.5 and 2 Hz respectively. However, relaxation kinetics did not influence muscular work when muscle excursions represented walking gait. In addition, muscular work produced at muscle lengths associated with walking gait was less than the work produced across Lo (55.7 ± 20.0%, 53.5 ± 21.0%, and 50.1 ± 22.0% for 0.5, 1 and 1.5 Hz respectively). Conclusion:, These results imply that relaxation kinetics are an important factor that limit the ability of muscle to produce work; however, the influence of relaxation kinetics on physiological function may depend on the relation between the optimum length and natural excursion of a muscle. [source]


    Gene targeted ablation of high molecular weight fibroblast growth factor-2

    DEVELOPMENTAL DYNAMICS, Issue 2 2009
    Mohamad Azhar
    Abstract Fibroblast growth factor-2 (FGF2) is produced as high molecular weight isoforms (HMW) and a low molecular weight isoform (LMW) by means of alternative usage of translation start sites in a single Fgf2 mRNA. Although the physiological function of FGF2 and FGF2 LMW has been investigated in myocardial capillarogenesis during normal cardiac growth, the role of FGF2 HMW has not been determined. Here, we report the generation of FGF2 HMW-deficient mice in which FGF2 HMW isoforms are ablated by the Tag-and-Exchange gene targeting technique. These mice are normal and fertile with normal fecundity, and have a normal life span. Histological, immunohistochemical, and morphometric analyses indicate normal myocardial architecture, blood vessel, and cardiac capillary density in young adult FGF2 HMW-deficient mice. These mice along with the FGF2- and FGF2 LMW-deficient mice that we have generated previously will be very useful for elucidating the differential functions of FGF2 isoforms in pathophysiology of cardiovascular diseases. Developmental Dynamics 238:351,357, 2009. © 2008 Wiley-Liss, Inc. [source]


    Are CB1 receptor antagonists nootropic or cognitive impairing agents?

    DRUG DEVELOPMENT RESEARCH, Issue 8 2009
    Stephen A. Varvel
    Abstract For more than a decade, a considerable amount of research has examined the effects of rimonabant (SR 141716) and other CB1 receptor antagonists in both in vivo and in vitro models of learning and memory. In addition to its utility in determining whether the effects of drugs are mediated though a CB1 receptor mechanism of action, these antagonists are useful in providing insight into the physiological function of the endogenous cannabinoid system. Several groups have reported that CB1 receptor antagonists enhance memory duration in a variety of spatial and operant paradigms, but not in all paradigms. Conversely, disruption of CB1 receptor signaling also impairs extinction learning in which the animal actively suppresses a learned response when reinforcement has been withheld. These extinction deficits occur in aversively motivated tasks, such as in fear conditioning or escape behavior in the Morris water maze task, but not in appetitively motivated tasks. Similarly, in electrophysiological models, CB1 receptor antagonists elicit a variety of effects, including enhancement of long-term potentiation (LTP), while disrupting long-term depression (LTD) and interfering with transient forms of plasticity, including depolarization-induced suppression of inhibition (DSI) and depolarization-induced suppression of excitation (DSE). The collective results of the in vivo and in vitro studies employing CB1 receptor antagonists, demonstrate that these receptors play integral roles in different components of cognitive processing. Functionally, pharmacological blockade of CB1 receptors may strengthen memory duration, but interferes with extinction of learned behaviors that are associated with traumatic or aversive memories. Drug Dev Res 70:555,565, 2009. © 2009 Wiley-Liss, Inc. [source]


    Contaminant-associated alteration of immune function in black-footed albatross (Phoebastria nigripes), a North Pacific predator

    ENVIRONMENTAL TOXICOLOGY & CHEMISTRY, Issue 9 2007
    Myra E. Finkelstein
    Abstract Environmental pollution is ubiquitous and can pose a significant threat to wild populations through declines in fitness and population numbers. To elucidate the impact of marine pollution on a pelagic species, we assessed whether toxic contaminants accumulated in black-footed albatross (Phoebastria nigripes), a wide-ranging North Pacific predator, are correlated with altered physiological function. Blood samples from adult black-footed albatrosses on Midway Atoll, part of the Hawaiian (USA) archipelago, were analyzed for organochlorines (e.g., polychlorinated biphenyls [PCBs] and chlorinated pesticides), trace metals (silver, cadmium, tin, lead, chromium, nickel, copper, zinc, arsenic, selenium, and total mercury), and a sensitive physiological marker, peripheral white blood cell immune function (mitogen-induced lymphocyte proliferation and macrophage phagocytosis). We found a positive significant relationship between organochlorines, which were highly correlated within individual birds (p < 0.001, r > 0.80, Spearman correlation for all comparisons; PCBs, 160 ± 60 ng/ml plasma [mean ± standard deviation]; DDTs, 140 ± 180 ng/ml plasma; chlordanes, 7.0 ± 3.6 ng/ml plasma; hexachlorobenzene, 2.4 ± 1.5 ng/ml plasma; n = 15) and increased lymphocyte proliferation (p = 0.020) as well as percentage lymphocytes (p = 0.033). Mercury was elevated in black-footed albatrosses (4,500 ± 870 ng/ml whole blood, n = 15), and high mercury levels appeared to be associated (p = 0.017) with impaired macrophage phagocytosis. The associations we documented between multiple contaminant concentrations and immune function in endangered black-footed albatrosses provide some of the first evidence that albatrosses in the North Pacific may be affected by environmental contamination. Our results raise concern regarding detrimental health effects in pelagic predators exposed to persistent marine pollutants. [source]


    Erythropoiesis and red cell function in vertebrate embryos

    EUROPEAN JOURNAL OF CLINICAL INVESTIGATION, Issue 2005
    R. Baumann
    Abstract All vertebrate embryos produce a specific erythroid cell population , primitive erythrocytes , early in development. These cells are characterized by expression of the specific embryonic haemoglobins. Many aspects of primitive erythropoiesis and the physiological function of primitive red cells are still enigmatic. Nevertheless, recent years have seen intensive efforts to characterize in greater detail the molecular events underlying the initiation of erythropoiesis in vertebrate embryos. Several key genes have been identified that are necessary for primitive and the subsequent definitive erythropoiesis, which differs in several aspect from primitive erythropoiesis. This review gives in its first part a short overview dealing with comparative aspects of primitive and early definitive erythropoiesis in higher and lower vertebrates and in the second part we discuss the physiological function of primitive red cells based mainly on results from mammalian and avian embryos. [source]


    Tamm-Horsfall protein: a multilayered defence molecule against urinary tract infection

    EUROPEAN JOURNAL OF CLINICAL INVESTIGATION, Issue 4 2005
    M. D. Säemann
    Abstract Urinary tract infection (UTI) is the most common nonepidemic bacterial infection in humans, representing a constant danger for the host. Both innate and adaptive components of the immune system as well as stromal cells including bladder epithelium are involved in the prevention and clearance of UTI. However, the particular properties of the urogenital tract, which does not comprise typical physical barriers like a mucus or ciliated epithelium, necessitate soluble mediators with potent immunomodulatory capabilities. One candidate molecule capable of both mediating direct antimicrobial activity and alerting immune cells is the evolutionary conserved Tamm-Horsfall protein (THP). Tamm-Horsfall protein is exclusively produced by the kidney in the distal loop of Henle; however, its definite physiological function remains elusive. Mounting evidence indicates that beyond a mere direct antimicrobial activity, THP exerts potent immunoregulatory activity. Furthermore, the genetic ablation of the THP gene leads to severe infection and lethal pyelonephritis in an experimental model of UTI. Recent data are provided demonstrating that THP links the innate immune response with specific THP-directed cell-mediated immunity. In light of these novel findings we discuss the particular role of THP as a specialized defence molecule. We propose an integrated model of protective mechanisms against UTI where THP acts by two principle nonmutually exclusive mechanisms involving the capture of potentially dangerous microbes and the ability of this peculiar glycoprotein to induce robust protective immune responses against uropathogenic bacteria. [source]


    IgG2 containing IgM,IgG immune complexes predominate in normal human plasma, but not in plasma of patients with warm autoimmune haemolytic anaemia

    EUROPEAN JOURNAL OF HAEMATOLOGY, Issue 3 2006
    Dorothea Stahl
    Abstract:, The different physicochemical and sterical properties of IgG subclasses may favour a selective enrichment of defined IgG subclasses in IgM,IgG immune complexes (IC) of human plasma under physiological conditions. Such enrichment of IgG subclasses in IgM,IgG IC of plasma may differ from the normal IgG subclass distribution in plasma itself, and contribute to the physiological functions of IgM,IgG IC. Systematic studies on the IgG subclass distribution in IgM,IgG IC in humans are lacking. Using specific analytical techniques to characterise IgM,IgG IC in human plasma (i.e. fast protein liquid chromatography, enzyme-linked immunosorbent assay, affinity biosensor technology), and taking warm autoimmune haemolytic anaemia (WAIHA) of humans as a disease model, we here demonstrate that: (i) IgG2 is the predominant IgG subclass in IgM,IgG IC under physiological conditions, (ii) the predominance of IgG2 within IgM,IgG IC may get lost in polyclonal IgG-mediated autoimmune disease and (iii) the IgG subclass distribution in IgM,IgG IC influences the interaction between IC and blood cells involved in antigen presentation. The data presented here therefore extend the physiological function of IgG2, which is the protective immune response towards carbohydrate antigens in bacterial infections, and suggest IgG2-dependent regulation of immune responses to self-immunoglobulin in humans. The disturbed IgG subclass distribution in IgM,IgG IC of patients with WAIHA might influence activity of self-reactive B cells involved in the pathophysiology of the disease. [source]


    The cytosolic domain of APP induces the relocalization of dynamin 3 in hippocampal neurons

    EUROPEAN JOURNAL OF NEUROSCIENCE, Issue 9 2006
    X. Meckler
    Abstract Amyloid precursor protein (APP) has been the subject of intense research to uncover its implication in Alzheimer's disease. Its physiological function is, however, still poorly understood. Herein, we investigated its possible influence on the development of cultured hippocampal neurons. A peptide corresponding to the APP intracellular domain linked to a cell-penetrating peptide was used to alter the interactions of APP with its cytosolic partners. This treatment promoted the concentration of the cytosolic GTPase dynamin 3 (Dyn3) in neurite segments when most untreated cells displayed a homogenous punctate distribution of Dyn3. The Dyn3-labelled segments were excluded from those revealed by APP staining after aldehyde fixation. Interestingly, after aldehyde fixation MAP2 also labelled segments excluded from APP-stained segments. Thus APP is also a marker for the spacing pattern of neurites demonstrated by Taylor & Fallon (2006)J. Neurosci., 26, 1154,4463. [source]


    The 21st century renaissance of the basophil?

    EXPERIMENTAL DERMATOLOGY, Issue 11 2006
    Current insights into its role in allergic responses, innate immunity
    Abstract:, Basophils and mast cells express all the three subchains of the high-affinity immunoglobulin E (IgE) receptor Fc,RI and contain preformed histamine in the cytoplasmic granules. However, it is increasingly clear that these cells play distinct roles in allergic inflammatory disease. Despite their presence throughout much of the animal kingdom, the physiological function of basophils remains obscure. As rodent mast cells are more numerous than basophils, and generate an assortment of inflammatory cytokines, basophils have often been regarded as minor players in allergic inflammation. In humans, however, basophils are the prime early producers of interleukin (IL)-4 and IL-13, T helper (Th)2-type cytokines crucial for initiating and maintaining allergic responses. Basophils also express CD40 ligand which, in combination with IL-4 and IL-13, facilitates IgE class switching in B cells. They are the main cellular source for early IL-4 production, which is vital for the development of Th2 responses. The localization of basophils in various tissues affected by allergic inflammation has now been clearly demonstrated by using specific staining techniques and the new research is shedding light on their selective recruitment to the tissues. Finally, recent studies have shown that basophil activation is not restricted to antigen-specific IgE crosslinking, but can be caused in non-sensitized individuals by a growing list of parasitic antigens, lectins and viral superantigens, binding to non-specific IgE antibodies. This, together with novel IgE-independent routes of activation, imparts important new insights into the potential role of basophils in both adaptive and innate immunity. [source]


    Computational physiology and the physiome project

    EXPERIMENTAL PHYSIOLOGY, Issue 1 2004
    Edmund J. Crampin
    Bioengineering analyses of physiological systems use the computational solution of physical conservation laws on anatomically detailed geometric models to understand the physiological function of intact organs in terms of the properties and behaviour of the cells and tissues within the organ. By linking behaviour in a quantitative, mathematically defined sense across multiple scales of biological organization , from proteins to cells, tissues, organs and organ systems , these methods have the potential to link patient-specific knowledge at the two ends of these spatial scales. A genetic profile linked to cardiac ion channel mutations, for example, can be interpreted in relation to body surface ECG measurements via a mathematical model of the heart and torso, which includes the spatial distribution of cardiac ion channels throughout the myocardium and the individual kinetics for each of the approximately 50 types of ion channel, exchanger or pump known to be present in the heart. Similarly, linking molecular defects such as mutations of chloride ion channels in lung epithelial cells to the integrated function of the intact lung requires models that include the detailed anatomy of the lungs, the physics of air flow, blood flow and gas exchange, together with the large deformation mechanics of breathing. Organizing this large body of knowledge into a coherent framework for modelling requires the development of ontologies, markup languages for encoding models, and web-accessible distributed databases. In this article we review the state of the field at all the relevant levels, and the tools that are being developed to tackle such complexity. Integrative physiology is central to the interpretation of genomic and proteomic data, and is becoming a highly quantitative, computer-intensive discipline. [source]


    Inhibition of PI3K/Akt partially leads to the inhibition of PrPC -induced drug resistance in gastric cancer cells

    FEBS JOURNAL, Issue 3 2009
    Jie Liang
    Cellular prion protein (PrPC), a glycosyl-phosphatidylinositol-anchored membrane protein with unclear physiological function, was previous found to be upregulated in adriamycin (ADR)-resistant gastric carcinoma cell line SGC7901/ADR compared to its parental cell line SGC7901. Overexpression of PrPC in gastric cancer has certain effects on drug accumulation through upregulation of P-glycoprotein (P-gp), which is suggested to play an important role in determining the sensitivity of tumor cells to chemotherapy and is linked to activation of the phosphatidylinositol-3-kinase/Akt (PI3K/Akt) pathway. In the present study, we further investigate the role of the PI3K/Akt pathway in PrPC -induced multidrug-resistance (MDR) in gastric cancer. Immunohistochemistry and confocal microscope detection suggest a positive correlation between PrPC and phosphorylated Akt (p-Akt) expression in gastric cancer. Using established stable PrPC transfectant cell lines, we demonstrated that the level of p-Akt was increased in PrPC -transfected cells. Inhibition of PrPC expression by RNA interference resulted in decreased p-Akt expression. Inhibition of the PI3K/Akt pathway by one of its specific inhibitors, LY294002, or by Akt small interfering RNA (siRNA) resulted in decreased multidrug resistance of SGC7901 cells, partly through downregulation of P-gp induced by PrPC. Taken together, our results suggest that PrPC -induced MDR in gastric cancer is associated with activation of the PI3K/Akt pathway. Inhibition of PI3K/Akt by LY2940002 or Akt siRNA leads to inhibition of PrPC -induced drug resistance and P-gp upregulation in gastric cancer cells, indicating a possible novel mechanism by which PrPC regulates gastric cancer cell survival. [source]


    Three enzymatic activities catalyze the oxidation of sulfide to thiosulfate in mammalian and invertebrate mitochondria

    FEBS JOURNAL, Issue 13 2008
    Tatjana M. Hildebrandt
    Hydrogen sulfide is a potent toxin of aerobic respiration, but also has physiological functions as a signalling molecule and as a substrate for ATP production. A mitochondrial pathway catalyzing sulfide oxidation to thiosulfate in three consecutive reactions has been identified in rat liver as well as in the body-wall tissue of the lugworm, Arenicola marina. A membrane-bound sulfide : quinone oxidoreductase converts sulfide to persulfides and transfers the electrons to the ubiquinone pool. Subsequently, a putative sulfur dioxygenase in the mitochondrial matrix oxidizes one persulfide molecule to sulfite, consuming molecular oxygen. The final reaction is catalyzed by a sulfur transferase, which adds a second persulfide from the sulfide : quinone oxidoreductase to sulfite, resulting in the final product thiosulfate. This role in sulfide oxidation is an additional physiological function of the mitochondrial sulfur transferase, rhodanese. [source]


    Copper is required for prion protein-associated superoxide dismutase-l activity in Pichia pastoris

    FEBS JOURNAL, Issue 5 2007
    Carina Treiber
    The prion protein (PrP) is the key protein implicated in transmissible spongiform encephalopathies. It is a metalloprotein that binds manganese and copper. The latter is involved in the physiological function of the protein. We have previously found that PrP expression in Pichia pastoris affects intracellular metal ion concentrations and that formation of protease-resistant PrP is induced by additional copper and/or manganese. In this study, we show that heterologously expressed PrP is post-translationally modified and transported to the cell wall. We found by combining three different test systems that PrP itself had gained superoxide dismutase-like activity in P. pastoris. However, this activity could not be inhibited by KCN and depended on additional copper in the medium. Thus, this study defines the conditions under which PrP exhibits superoxide dismutase-like activity by showing that copper must be present for the protein to participate in scavenging and detoxification of reactive oxygen species. [source]


    Human ATP-dependent RNA/DNA helicase hSuv3p interacts with the cofactor of survivin HBXIP

    FEBS JOURNAL, Issue 19 2005
    Michal Minczuk
    The human SUV3gene encodes an NTP-dependent DNA/RNA DExH box helicase predominantly localized in mitochondria. Its orthologue in yeast is a component of the mitochondrial degradosome complex involved in the mtRNA decay pathway. In contrast to this, the physiological function of human SUV3 remains to be elucidated. In this report we demonstrate that the hSuv3 protein interacts with HBXIP, previously identified as a cofactor of survivin in suppression of apoptosis and as a protein that binds the HBx protein encoded by the hepatitis B virus. Using deletion analysis we identified the region within the hSuv3 protein, which is responsible for binding to HBXIP. The HBXIP binding domain was found to be important for mitochondrial import and stability of the Suv3 protein in vivo. We discuss the possible involvement of the hSuv3p,HBXIP interaction in the survivin-dependent antiapoptotic pathway. [source]


    Unmasking a hyaluronan-binding site of the BX7B type in the H3 heavy chain of the inter-,-inhibitor family

    FEBS JOURNAL, Issue 3 2001
    Laetitia Jean
    The inter-,-inhibitor (I,I) family gathers together several plasma protease inhibitors such as I,I and pre-,-inhibitor (P,I) that are variously assembled from a set of polypeptide chain precursors designated H1P to H3P. In addition to their protease inhibitory activity, a major physiological function of I,I family members is hyaluronan (HA) binding and HA-dependent stabilization of the extracellular matrix surrounding various cell types. Also, binding of HA to these molecules has been shown to be an important event in tumor cell proliferation and rheumatoid arthritis. However, how HA and I,I family members first recognize each other has so far remained elusive. The so-called BX7B domain found in some HA-binding proteins is an HA-binding site in which B represents a basic amino-acid residue and X represents any nonacidic residue. This domain has now been identified in the N-terminal end of H3P that is a precursor of P,I. A series of wild-type or mutant recombinant H3P chains produced with a mouse cDNA expressed in Escherichia coli allowed us to demonstrate that this domain binds HA in a noncovalent fashion. Furthermore, unmasking this HA-binding activity required most of H3P to be trimmed off at its C-terminal end. The latter observation was confirmed with a natural, mature H3 chain purified from human plasma. Indeed, a thermolysin-generated, N-terminal fragment of this H3 chain strongly bound HA whereas the intact H3 chain did not. Therefore, in vivo, the HA-binding activity of the mature H3 chain within P,I may vary with the folding and/or fragmentation of this protein. [source]


    A spontaneous mutation of the Wwox gene and audiogenic seizures in rats with lethal dwarfism and epilepsy

    GENES, BRAIN AND BEHAVIOR, Issue 7 2009
    H. Suzuki
    The lde/lde rat is characterized by dwarfism, postnatal lethality, male hypogonadism, a high incidence of epilepsy and many vacuoles in the hippocampus and amygdala. We used a candidate approach to identify the gene responsible for the lde phenotype and assessed the susceptibility of lde/lde rats for audiogenic seizures. Following backcross breeding of lethal dwarfism with epilepsy (LDE) to Brown Norway rats, the lde/lde rats with an altered genetic background showed all pleiotropic phenotypes. The lde locus was mapped to a 1.5-Mbp region on rat chromosome 19 that included the latter half of the Wwox gene. Sequencing of the full-length Wwox transcript identified a 13-bp deletion in exon 9 in lde/lde rats. This mutation causes a frame shift, resulting in aberrant amino acid sequences at the C-terminal. Western blotting showed that both the full-length products of the Wwox gene and its isoform were present in normal testes and hippocampi, whereas both products were undetectable in the testes and hippocampi of lde/lde rats. Sound stimulation induced epileptic seizures in 95% of lde/lde rats, with starting as wild running (WR), sometimes progressing to tonic,clonic convulsions. Electroencephalogram (EEG) analysis showed interictal spikes, fast waves during WR and burst of spikes during clonic phases. The Wwox protein is expressed in the central nervous system (CNS), indicating that abnormal neuronal excitability in lde/lde rats may be because of a lack of Wwox function. The lde/lde rat is not only useful for understanding the multiple functions of Wwox but is also a unique model for studying the physiological function of Wwox in CNS. [source]


    Osteocytes in the pathogenesis of osteoporosis

    GERIATRICS & GERONTOLOGY INTERNATIONAL, Issue 4 2008
    Kyoji Ikeda
    Bone is continuously renewed by bone resorption and subsequent bone formation, a coupling process that maintains the quality as well as the quantity of bone. It is widely accepted that osteoporosis develops when bone resorption exceeds bone formation, and the treatment as well as diagnosis has been targeted to two major cell types, osteoclasts and osteoblasts. Inside bone is a network of the third cell type, osteocytes, the physiological function of which has long remained an enigma. We have developed a transgenic mouse model in which inducible and specific ablation of osteocytes can be achieved in vivo, and here use it to demonstrate that osteocytes serve an important function in regulating the activities of osteoblasts and osteoclasts, while sensing and transducing the mechanical forces exerted on bone. Thus, osteocytes should provide an attractive target for the development of new types of mechanotransduction-based therapeutics and diagnostics for osteoporosis. [source]


    Molecular pathology of NEU1 gene in sialidosis,

    HUMAN MUTATION, Issue 5 2003
    Volkan Seyrantepe
    Abstract Lysosomal sialidase (EC 3.2.1.18) has a dual physiological function; it participates in intralysosomal catabolism of sialylated glycoconjugates and is involved in cellular immune response. Mutations in the sialidase gene NEU1, located on chromosome 6p21.3, result in autosomal recessive disorder, sialidosis, which is characterized by the progressive lysosomal storage of sialylated glycopeptides and oligosaccharides. Sialidosis type I is a milder, late-onset, normosomatic form of the disorder. Type I patients develop visual defects, myoclonus syndrome, cherry-red macular spots, ataxia, hyperreflexia, and seizures. The severe early-onset form, sialidosis type II, is also associated with dysostosis multiplex, Hurler-like phenotype, mental retardation, and hepatosplenomegaly. We summarize information on the 34 unique mutations determined so far in the sialidase gene, including four novel missense and one novel nonsense mutations found in two Czech and two French sialidosis patients. The analysis of sialidase mutations in sialidosis revealed considerable molecular heterogeneity, reflecting the diversity of clinical phenotypes that make molecular diagnosis difficult. The majority of sialidosis patients have had missense mutations, many of which have been expressed; their effects on activity, stability, intracellular localization, and supramolecular organization of sialidase were studied. A structural model of sialidase allowed us to localize mutations in the sialidase molecule and to predict their impact on the tertiary structure and biochemical properties of the enzyme. Hum Mutat 22:343,352, 2003. © 2003 Wiley-Liss, Inc. [source]


    Physiological functions of hemocytes newly emerged from the cultured hematopoietic organs in the silkworm, Bombyx mori

    INSECT SCIENCE, Issue 1 2010
    Cheng-Long Wang
    Abstract, Cellular immunity is a very important part of insect innate immunity. It is not clear if hemocytes entering the hemolymph require a maturation process to become competent. The establishment of a tissue culture system for the insect hematopoietic organs would enable physiological function assays with hemocytes newly emerged from hematopoietic organs. To this end, we established a hematopoietic organ culture system for the purebred silkworm pnd pS and then studied the physiological functions of the newly emerged hemocytes. We found that Grace's medium supplemented with 10% heated silkworm larval plasma was better for culturing the hematopoietic organs of pnd pS. Newly emerged hemocytes phagocytosed propidium iodide-labeled bacteria and encapsulated the Iml-2 coated nickel beads as well as pupal tissue debris. This culture system is therefore capable of generating physiologically functional hemocytes. These hemocytes can be used to study the mechanisms of the hemocyte immune response among others. [source]


    Tachykinins and their possible modulatory role on testicular function: a review

    INTERNATIONAL JOURNAL OF ANDROLOGY, Issue 4 2003
    Luciano Debeljuk
    Summary Tachykinins are vasoactive and smooth muscle-contracting peptides with widespread localizations. Tachykinins have been localized in the nerve fibres that supply the testes, in the Leydig cells of different animal species, and also in Sertoli cells of the Siberian hamster testes. The presence of substance P (SP) has also been demonstrated in ejaculated human spermatozoa and in the seminal plasma. Tachykinins have been shown to inhibit the release of testosterone by testicular fragments or by isolated Leydig cells in vitro. Acting on Sertoli cells, tachykinins have been shown to stimulate the release of lactate and transferrin by these cells in vitro, and also to stimulate aromatase activity. Leydig and Sertoli cells express the Preprotachykinin A gene, and this fact strongly suggests that tachykinins can be synthesized in the testes. These findings suggest that tachykinins may have a physiological function in the testes as modulators of the functions of the different cell types contained in these organs. [source]


    Formation of Lipid Emulsions and Clear Gels by Liquid Crystal Emulsification

    INTERNATIONAL JOURNAL OF COSMETIC SCIENCE, Issue 1 2007
    T. Suzuki
    Recently developed emulsion technologies for the formation of fine emulsions, lipid emulsions and clear gels by liquid crystal emulsification were reviewed. As a basic information on liquid crystal emulsification, the structures and characteristic behaviours of lyotropic liquid crystals were summarized. Formation of a liquid crystalline phase was often seen in emulsions and biological systems. The significance of liquid crystal formation during emulsification was analysed by comparing the states and stabilities of emulsions prepared by different processes. Then uses of liquid crystals for formation of the characteristic emulsions and gels were also discussed. In liquid crystal emulsification, an oil phase is dispersed directly into the lamellar liquid-crystalline phase composed of surfactant, glycerol and water to prepare a gel-like oil-in-liquid crystal emulsion. This is followed by dilution with the remaining water to produce an emulsion. From the phase behaviour during emulsification and analysis of the local motion of the liquid crystal membrane by fluorometry, it was confirmed that the interaction between surfactant and a polyol molecule such as glycerol promotes hydrogen bonding and enhances the strength of the lamellar liquid crystal membranes, which results in the formation of oil-in-liquid crystal emulsions. The interaction between the liquid crystal and oil was analysed from the changes in molecular motion of the membrane at the oil-liquid crystal interface using the spin label technique of electron spin resonance (ESR). The fluidity of the liquid crystal membrane did not change when oil was added, and therefore oil-in-liquid crystal emulsions of various oils were prepared by the identical process. This lack of dependence of the liquid crystal membrane on oil results in the unique properties of liquid crystal emulsification, which can be used for oils of various polarity and different molecular constituents. When a self-organizing artificial stratum corneum lipid containing pseudo-ceramide was used as a principal component of the oil, a multilamellar emulsion of concentric lamellar structure was formed. The multilamellar emulsion supplements the physiological function of stratum corneum by the identical mechanism as natural intercellular lipids. High-pressure treatment of the lipid emulsion produced a gel-like emulsion crystal, in which the homogeneous nanoemulsion droplets were arranged in a hexagonal array. This review paper was presented at the Conference of the Asian Societies of Cosmetic Scientists 2005 in Bangkok. [source]


    The NMDA receptor antagonist memantine as a symptomatological and neuroprotective treatment for Alzheimer's disease: preclinical evidence

    INTERNATIONAL JOURNAL OF GERIATRIC PSYCHIATRY, Issue S1 2003
    Wojciech Danysz
    Abstract There is increasing evidence for the involvement of glutamate-mediated neurotoxicity in the pathogenesis of Alzheimer's disease (AD). We suggest that glutamate receptors of the N-methyl-D-aspartate (NMDA) type are overactivated in a tonic rather than a phasic manner in this disorder. This continuous mild activation may lead to neuronal damage and impairment of synaptic plasticity (learning). It is likely that under such conditions Mg2+ ions, which block NMDA receptors under normal resting conditions, can no longer do so. We found that overactivation of NMDA receptors using a direct agonist or a decrease in Mg2+ concentration produced deficits in synaptic plasticity (in vivo: passive avoidance test and/or in vitro: LTP in the CA1 region). In both cases, memantine,an uncompetitive NMDA receptor antagonists with features of an ,improved' Mg2+ (voltage-dependency, kinetics, affinity),attenuated this deficit. Synaptic plasticity was restored by therapeutically-relevant concentrations of memantine (1,,M). Moreover, doses leading to similar brain/serum levels provided neuroprotection in animal models relevant for neurodegeneration in AD such as neurotoxicity produced by inflammation in the NBM or ,-amyloid injection to the hippocampus. As such, if overactivation of NMDA receptors is present in AD, memantine would be expected to improve both symptoms (cognition) and to slow down disease progression because it takes over the physiological function of magnesium. Copyright © 2003 John Wiley & Sons, Ltd. [source]


    Etiopathogenic role of HLA-B27 alleles in ankylosing spondylitis

    INTERNATIONAL JOURNAL OF RHEUMATIC DISEASES, Issue 3 2005
    Nurullah AKKOC
    Abstract HLA-B27 is the major genetic susceptibility factor for ankylosing spondylitis (AS). However, its precise role in the pathogenesis of AS still remains unclear, even though its gene has been cloned and sequenced, and its crystallographic structure has been defined. Arthritogenic peptide and molecular mimicry hypotheses propose mechanisms related to an antigen-presenting function of HLA-B27 to be responsible for disease development. However, peculiar aspects of its immunobiology, such as its misfolding and heavy chain dimerization raise the possibility of involvement of pathogenic mechanisms unrelated to its physiological function. Moreover, HLA-B27 is not a single allele, but a family of 31 different alleles, named HLA-B*2701 to HLA-B*2727. Studies worldwide indicate that the relatively common alleles (subtypes) HLA-B*2705, B*2704, and B*2702 are strongly associated with AS, whereas HLA-B*2706 which is prevalent in South-east Asia and HLA-B*2709 which is prevalent on the Italian island of Sardinia, seem to lack such an association. The distinction between the disease-associated subtypes and those that are not associated, may provide clues to the actual role of HLA-B27 in disease pathogenesis. B*2706 differs from B*2704 by only two residues, and B*2709 differs from B*2705 by only one residue. Moreover, both B*2706 and B*2709 bind an endogenous peptide (derived from vasoactive intestinal peptide type 1 receptor) and also an exogenous peptide (latent membrane protein 2 of Epstein-Barr virus) but in two drastically diverse conformations. These recent X-ray diffraction studies of individual peptides in the context of different HLA-B27 alleles broaden our perception of the possible pathogenetic role of this molecule in the development of AS and related spondyloarthopathies. In summary, the pathogenetic role of HLA-B27 in AS seem to be quite heterogenous, and cannot be explained by a single mechanism, and new ideas have been raised based on the aberrant immunobiologic features of HLA-B27. [source]


    Searching for Neuroglobin's role in the brain

    IUBMB LIFE, Issue 8-9 2007
    Karin Nienhaus
    Abstract Neuroglobin is a small globin that plays an important role in the protection of brain neurons from ischemic and hypoxic injuries. The molecular mechanisms by which Ngb performs its physiological function are still under debate. Suggestions include oxygen storage and delivery, scavenging of NO and/or reactive oxygen species, oxygen sensing and signal transduction. In recent years, the molecular structures of Ngb with carbon monoxide bound to the heme iron and without an exogenous ligand have been solved, and interesting structural changes have been noticed upon ligand binding. Moreover, equilibrium and kinetic properties of the reactions with ligands have been examined in great detail. Here we summarize the molecular properties of Ngb and discuss them in relation to the potential physiological functions. [source]


    Role of aquaporins in endothelial water transport

    JOURNAL OF ANATOMY, Issue 5 2002
    A. S. Verkman
    The aquaporins (AQP) are a family of homologous water channels expressed in many epithelial and endothelial cell types involved in fluid transport. AQP1 protein is strongly expressed in most microvascular endothelia outside of the brain as well as in endothelial cells in cornea, intestinal lacteals, and other tissues. AQP4 is expressed in astroglial foot processes adjacent to endothelial cells in the central nervous system. Transgenic mice lacking aquaporins have been useful in defining their role in mammalian physiology. Mice lacking AQP1 manifest defective urinary concentrating ability, in part because of decreased water permeability in renal vasa recta microvessels. These mice also show a defect in dietary fat processing that may involve chylomicron absorption by intestinal lacteals. There is preliminary evidence that AQP1 might play a role in tumour angiogenesis and in renal microvessel structural adaptation. However AQP1 in most endothelial tissues does not appear to have a physiological function despite its role in osmotically driven water transport. For example mice lacking AQP1 have low alveolar capillary water permeability but unimpaired lung fluid absorption, as well as unimpaired saliva and tear secretion, aqueous fluid outflow, and pleural and peritoneal fluid transport. In the central nervous system mice lacking AQP4 are partially protected from brain oedema in water intoxication and ischaemic models of brain injury. Therefore although the role of aquaporins in epithelial fluid transport is in most cases well understood there remain many questions about the role of aquaporins in endothelial cell function. It is unclear why many leaky microvessels strongly express AQP1 without apparent functional significance. Improved understanding of aquaporin endothelial biology may lead to novel therapies for human disease, such as pharmacological modulation of tumour angiogenesis, renal fluid clearance and intestinal absorption. [source]


    Interaction between phosphorus and biodegradable organic carbon on drinking water biofilm subject to chlorination

    JOURNAL OF APPLIED MICROBIOLOGY, Issue 6 2010
    S.-K. Park
    Abstract Aims:, To examine whether phosphorus and biodegradable organic carbon interact to impact biofilm density and physiological function of biofilm-forming bacteria under conditions relevant to chlorinated drinking water distribution systems. Materials and Results:, The 2 × 2 factorial experiments with low and high levels of phosphorus and biodegradable organic carbon were performed on 4 -week-old drinking water biofilms in four separate pipe systems in the presence of chlorine. Experimental results revealed that biofilm heterotrophic plate count levels increased with the increase in biodegradable organic carbon concentration, showed no response to increases in levels of phosphorus and was not affected by interaction between phosphorus and biodegradable organic carbon. However, a significant positive interaction between phosphorus and biodegradable organic carbon was found to exist on biofilm mass and physiological function and/or metabolic potentials of biofilm communities; the effects of biodegradable organic carbon on biofilm mass and physiological function of biofilm-forming bacteria were accelerated in going from low to high level of phosphorus. Conclusions:, Biodegradable organic carbon was found to be the primary nutrient in regulating biofilm formation in drinking water regardless of the presence of chlorine. It can be therefore concluded that the removal of an easily biodegradable organic carbon is necessary to minimize the biofilm growth potential induced by the intrusion of phosphorus. Significance and Impact of the Study:, Phosphorus introduced to drinking water may interact with biodegradable organic carbon, thus leading to measurable impact on the biofilm formation. [source]