Physiological Characterization (physiological + characterization)

Distribution by Scientific Domains


Selected Abstracts


PHYSIOLOGICAL CHARACTERIZATION OF A SYNECHOCOCCUS SP. (CYANOPHYCEAE) STRAIN PCC 7942 IRON-DEPENDENT BIOREPORTER FOR FRESHWATER ENVIRONMENTS,

JOURNAL OF PHYCOLOGY, Issue 1 2003
David Porta
The complex chemical speciation of Fe in aquatic systems and the uncertainties associated with biological assimilation of Fe species make it difficult to assess the bioavailability of Fe to phytoplankton in relation to total dissolved Fe concentrations in natural waters. We developed a cyanobacterial Fe-responsive bioreporter constructed in Synechococcus sp. strain PCC 7942 by fusing the Fe-responsive isiAB promoter to Vibrio harveyi luxAB reporter genes. A comprehensive physiological characterization of the bioreporter has been made in defined Fraquil medium at free ferric ion concentrations ranging from pFe 21.6 to pFe 19.5. Whereas growth and physiological parameters are largely constrained over this range of Fe bioavailability, the bioreporter elicits a luminescent signal that varies in response to Fe deficiency. A dose-response characterization of bioreporter luminescence made over this range of Fe3+ bioavailability demonstrates a sigmoidal response with a dynamic linear range extending between pFe 21.1 and pFe 20.6. The applicability of using this Fe bioreporter to assess Fe availability in the natural environment has been tested using water samples from Lake Huron (Laurentian Great Lakes). Parallel assessment of dissolved Fe and bioreporter response from these samples reinforces the idea that measures of dissolved Fe should not be considered alone when assessing Fe availability to phytoplankton communities. [source]


Morphological, Small Subunit rRNA, and Physiological Characterization of Trimyema minutum (Kahl, 1931), an Anaerobic Ciliate from Submarine Hydrothermal Vents Growing from 28°C to 52°C

THE JOURNAL OF EUKARYOTIC MICROBIOLOGY, Issue 3 2002
MANUELA BAUMGARTNER
ABSTRACT. A thermophilic strain of Trimyema minutum was isolated from the hydrothermally heated sea floor at Vulcano Island (Italy) and cultivated monoxenically on Marinobaaer sp. and Methanococcus thermolithotrophicus. It can be propagated strictly an aerobically and is sensitive to oxygen: if exposed to air at 48°C all cells die within 60 min. It grows from 0.45,7.2% (w/v) salt and at pH 6.0,8.0. The isolate is the most extreme thermophilic ciliate which ever has been cultivated, exhibiting an optimal growth temperature of 48°C (doubling time 6 h). Growth occurs between 28°C and 52°C. Trimyema minutum is redescribed using live observation and silver impregnation. Its morphology and the small subunit ribosomal RNA sequence is distinctly different from that of T. compressum, but morphology is highly similar to that of T. shoalsiaNerad et al. 1995, which is thus probably a junior synonym of T. minutum. To stabilize the bewildering species taxonomy in Trimyema. we suggest to recognize our population as a neotype of T. minutum. [source]


Metabolic fate of l -lactaldehyde derived from an alternative l -rhamnose pathway

FEBS JOURNAL, Issue 20 2008
Seiya Watanabe
Fungal Pichia stipitis and bacterial Azotobacter vinelandii possess an alternative pathway of l -rhamnose metabolism, which is different from the known bacterial pathway. In a previous study (Watanabe S, Saimura M & Makino K (2008) Eukaryotic and bacterial gene clusters related to an alternative pathway of non-phosphorylated l -rhamnose metabolism. J Biol Chem283, 20372,20382), we identified and characterized the gene clusters encoding the four metabolic enzymes [l -rhamnose 1-dehydrogenase (LRA1), l -rhamnono-,-lactonase (LRA2), l -rhamnonate dehydratase (LRA3) and l -2-keto-3-deoxyrhamnonate aldolase (LRA4)]. In the known and alternative l -rhamnose pathways, l -lactaldehyde is commonly produced from l -2-keto-3-deoxyrhamnonate and l -rhamnulose 1-phosphate by each specific aldolase, respectively. To estimate the metabolic fate of l -lactaldehyde in fungi, we purified l -lactaldehyde dehydrogenase (LADH) from P. stipitis cells l -rhamnose-grown to homogeneity, and identified the gene encoding this enzyme (PsLADH) by matrix-assisted laser desorption ionization-quadruple ion trap-time of flight mass spectrometry. In contrast, LADH of A. vinelandii (AvLADH) was clustered with the LRA1,4 gene on the genome. Physiological characterization using recombinant enzymes revealed that, of the tested aldehyde substrates, l -lactaldehyde is the best substrate for both PsLADH and AvLADH, and that PsLADH shows broad substrate specificity and relaxed coenzyme specificity compared with AvLADH. In the phylogenetic tree of the aldehyde dehydrogenase superfamily, PsLADH is poorly related to the known bacterial LADHs, including that of Escherichia coli (EcLADH). However, despite its involvement in different l -rhamnose metabolism, AvLADH belongs to the same subfamily as EcLADH. This suggests that the substrate specificities for l -lactaldehyde between fungal and bacterial LADHs have been acquired independently. [source]


Lack of main K+ uptake systems in Saccharomyces cerevisiae cells affects yeast performance in both potassium-sufficient and potassium-limiting conditions

FEMS YEAST RESEARCH, Issue 5 2010
Clara Navarrete
Abstract A new YNB medium containing very low concentrations of alkali metal cations has been developed to carry out experiments to study potassium homoeostasis. Physiological characterization of Saccharomyces cerevisiae BY4741 strain and the corresponding mutant lacking the main potassium uptake systems (trk1 trk2) under potassium nonlimiting and limiting concentrations was performed, and novel important differences between both strains were found. At nonlimiting concentrations of KCl, the two strains had a comparable cell size and potassium content. Nevertheless, mutants were hyperpolarized, had lower pH and extruded fewer protons compared with the BY4741 strain. Upon transfer to K+ -limiting conditions, cells of both strains became hyperpolarized and their cell volume and K+ content diminished; however, the decrease was more relevant in BY4741. In low potassium, trk1 trk2 cells were not able to accomplish the cell cycle to the same extent as in BY4741. Moreover, K+ limitation triggered a high-affinity K+/Rb+ uptake process only in BY4741, with the highest affinity being reached as soon as 30 min after transfer to potassium-limiting conditions. By establishing basic cellular parameters under standard growth conditions, this work aims to establish a basis for the investigation of potassium homoeostasis at the system level. [source]


Physiological characterization of Mycobacterium sp. strain 1B isolated from a bacterial culture able to degrade high-molecular-weight polycyclic aromatic hydrocarbons

JOURNAL OF APPLIED MICROBIOLOGY, Issue 2 2004
C.E. Dandie
Abstract Aim:, The aim of this study was to further characterize a bacterial culture (VUN 10,010) capable of benzo[a]pyrene cometabolism. Methods and Results:, The bacterial culture, previously characterized as a pure culture of Stenotrophomonas maltophilia (VUN 10,010), was found to also contain another bacterial species (Mycobacterium sp. strain 1B), capable of degrading a similar range of PAH substrates. Analysis of its 16S rRNA gene sequence and growth characteristics revealed the strain to be a fast-growing Mycobacterium sp., closely related to other previously isolated PAH and xenobiotic-degrading mycobacterial strains. Comparison of the PAH-degrading characteristics of Mycobacterium sp. strain 1B with those of S. maltophilia indicated some similarities (ability to degrade phenanthrene and pyrene), but some differences were also noted (S. maltophilia able to degrade fluorene, but not fluoranthene, whereas Mycobacterium sp. strain 1B can degrade fluoranthene, but not fluorene). Unlike the S. maltophilia culture, there was no evidence of benzo[a]pyrene degradation by Mycobacterium sp. strain 1B, even in the presence of other PAHs (ie pyrene) as co-metabolic substrates. Growth of Mycobacterium sp. strain 1B on other organic carbon sources was also limited compared with the S. maltophilia culture. Conclusions:, This study isolated a Mycobacterium strain from a bacterial culture capable of benzo[a]pyrene cometabolism. The Mycobacterium strain displays different PAH-degrading characteristics to those described previously for the PAH-degrading bacterial culture. It is unclear what role the two bacterial strains play in benzo[a]pyrene cometabolism, as the Mycobacterium strain does not appear to have endogenous benzo[a]pyrene degrading ability. Significance and Impact of the Study:, This study describes the isolation and characterization of a novel PAH-degrading Mycobacterium strain from a PAH-degrading culture. Further studies utilizing this strain alone, and in combination with other members of the consortium, will provide insight into the diverse roles different bacteria may play in PAH degradation in mixed cultures and in the environment. [source]


The gene sll0273 of the cyanobacterium Synechocystis sp. strain PCC6803 encodes a protein essential for growth at low Na+/K+ ratios

PLANT CELL & ENVIRONMENT, Issue 6 2000
S. Mikkat
ABSTRACT A mutant of Synechocystis sp. strain PCC6803 was obtained by random cartridge mutagenesis, which could not grow at low sodium concentrations. Genetic analyses revealed that partial deletion of the sll0273 gene, encoding a putative Na+/H+ exchanger, was responsible for this defect. Physiological characterization indicated that the sll0273 mutant exhibited an increased sensitivity towards K+, even at low concentrations, which was compensated for by enhanced concentrations of Na+. This enhanced Na+ demand could also be met by Li+. Furthermore, addition of monensin, an ionophore mediating electroneutral Na+/H+ exchange, supported growth of the mutant at unfavourable Na+/K+ ratios. Measurement of internal Na+ and K+ contents of wild-type and mutant cells revealed a decreased Na+/K+ ratio in mutant cells pre-incubated at a low external Na+/K+ ratio, while it remained at the level of the wild type after pre-incubation at a high external Na+/K+ ratio. We conclude that the Sll0273 protein is required for Na+ influx, especially at low external Na+ concentrations or low Na+/K+ ratios. This system may be part of a sodium cycle and may permit re-entry of Na+ into the cells, if nutrient/Na+ symporters are not functional or operating. [source]


Behavioural and physiological characterization of inbred mouse strains: prospects for elucidating the molecular mechanisms of mammalian learning and memory

GENES, BRAIN AND BEHAVIOR, Issue 2 2002
P. V. Nguyen
With the advent of recombinant DNA methodology, it has become possible to dissect the molecular mechanisms of complex traits, including brain function and behaviour. The increasing amount of available information on the genomes of mammalian organisms, including our own, has facilitated this research. The present review focuses on a somewhat neglected area of genetics, one that involves the study of inbred mouse strains. It is argued that the use of inbred mice is complementary to transgenic approaches in the analysis of molecular mechanisms of complex traits. Whereas transgenic technology allows one to manipulate a single gene and investigate the in vivo effects of highly specific, artificially induced mutations, the study of inbred mouse strains should shed light on the roles of naturally occurring allelic variants in brain function and behaviour. Systematic characterization of the behavioural, electrophysiological, neurochemical, and neuroanatomical properties of a large number of inbred strains is required to elucidate mechanisms of mammalian brain function and behaviour. In essence, a ,mouse phenome' project is needed, entailing the construction of databases to investigate possible causal relationships amongst the phenotypical characteristics. This review focuses on electrophysiological and behavioural characterization of mouse strains. Nevertheless, it is emphasized that the full potential of the analysis of inbred mouse strains may be attained if techniques of numerous disciplines, including gene expression profiling, biochemical analysis, and quantitative trait loci (QTL) mapping, to name but a few, are also included. [source]


PHYSIOLOGICAL CHARACTERIZATION OF A SYNECHOCOCCUS SP. (CYANOPHYCEAE) STRAIN PCC 7942 IRON-DEPENDENT BIOREPORTER FOR FRESHWATER ENVIRONMENTS,

JOURNAL OF PHYCOLOGY, Issue 1 2003
David Porta
The complex chemical speciation of Fe in aquatic systems and the uncertainties associated with biological assimilation of Fe species make it difficult to assess the bioavailability of Fe to phytoplankton in relation to total dissolved Fe concentrations in natural waters. We developed a cyanobacterial Fe-responsive bioreporter constructed in Synechococcus sp. strain PCC 7942 by fusing the Fe-responsive isiAB promoter to Vibrio harveyi luxAB reporter genes. A comprehensive physiological characterization of the bioreporter has been made in defined Fraquil medium at free ferric ion concentrations ranging from pFe 21.6 to pFe 19.5. Whereas growth and physiological parameters are largely constrained over this range of Fe bioavailability, the bioreporter elicits a luminescent signal that varies in response to Fe deficiency. A dose-response characterization of bioreporter luminescence made over this range of Fe3+ bioavailability demonstrates a sigmoidal response with a dynamic linear range extending between pFe 21.1 and pFe 20.6. The applicability of using this Fe bioreporter to assess Fe availability in the natural environment has been tested using water samples from Lake Huron (Laurentian Great Lakes). Parallel assessment of dissolved Fe and bioreporter response from these samples reinforces the idea that measures of dissolved Fe should not be considered alone when assessing Fe availability to phytoplankton communities. [source]


Functional colonography of Min mice using dark lumen dynamic contrast-enhanced MRI

MAGNETIC RESONANCE IN MEDICINE, Issue 3 2008
C. Chad Quarles
Abstract Dark lumen MRI colonography detects colonic polyps by minimization of the intestinal lumen signal intensity. Here we validate the use of perfluorinated oil as an intestinal-filling agent for dark lumen MRI studies in mice, enabling the physiological characterization of colonic polyps by dynamic contrast-enhanced MRI. In control and Min (multiple intestinal neoplasia) mice with and without pretreatment with oral dextran sodium sulfate (DSS), polyps as small as 0.94 mm diameter were consistently identified using standard 2D gradient echo imaging (voxel size, 0.23 × 0.16 × 0.5 mm). In serial studies, polyp growth rates were heterogeneous with an average ,5% increase in polyp volume per day. In DSS-treated control mice the colon wall contrast agent extravasation rate constant, Ktrans, and extravascular extracellular space volume fraction, ve, values were measured for the first time and found to be 0.10 ± 0.03 min,1 and 0.23 ± 0.09, respectively. In DSS-treated Min mice, polyp Ktrans values (0.09 ± 0.04 min,1) were similar to those in the colon wall but the ve values were substantially lower (0.16 ± 0.03), suggesting increased cellular density. The functional dark-lumen colonography approach described herein provides new opportunities for the noninvasive assessment of gastrointestinal disease pathology and treatment response in mouse models. Magn Reson Med 60:718,726, 2008. © 2008 Wiley-Liss, Inc. [source]