Home About us Contact | |||
Physiographic Regions (physiographic + regions)
Selected AbstractsEstimating the Variability of Active-Layer Thaw Depth in Two Physiographic Regions of Northern AlaskaGEOGRAPHICAL ANALYSIS, Issue 2 2001Claire E. Gomersall The active layer is the zone above permafrost that experiences seasonal freeze and thaw. Active-layer thickness varies annually in response to air and surface temperature, and generally decreases poleward. Substantially less is known about thaw variability across small lateral distances in response to topography, parent material, vegetation, and subsurface hydrology. A graduated steel rod was used to measure the 1998 end-of-season thaw depth across several transects. A balanced hierarchical sampling design was used to estimate the contribution to total variance in active-layer depth at separating distances of 1, 3, 9, 27, and 100 meters. A second sampling scheme was used to examine variation at shorter distances of 0.3 and 0.1 meter. This seven-stage sample design was applied to two sites in the Arctic Foothills physiographic province, and four sites on the Arctic Coastal Plain province in northern Alaska. The spatial variability for each site was determined using ANOVA and variogram methods to compare intersite and inter-province variation. Spatial variation in thaw depth was different in the Foothills and Coastal Plain sites. A greater percentage of the total variance occurs at short lag distances (0,3 meters) at the Foothills sites, presumably reflecting the influence of frost boils and tussock vegetation on ground heat flow. In contrast, thaw variation at the Coastal Plain sites occurs at distances exceeding 10 meters, and is attributed to the influence of well-developed networks of ice-wedge polygons and the presence of drained thaw-lake basins. This information was used to determine an ongoing sampling scheme for each site and to assess the suitability of each method of analysis. [source] Sedimentation of Soils from Three Physiographic Regions of Alabama at Different SalinitiesJOURNAL OF THE WORLD AQUACULTURE SOCIETY, Issue 4 2009Gulnihal Ozbay This study evaluated the rate of sedimentation from water under various salinities, over a time period of 72 h. The particles come from soils that are commonly found in shrimp growing areas of Alabama: Black Belt Prairie, Piedmont Plateau, and Upper Coastal Plain. Different salinity treatments and settling times resulted in significant differences (P, 0.05) in the reduction of turbidity and TSS for each soil type. Solutions containing 2 ppt salinity had a similar rate of turbidity reduction as the solutions with 5, 10, or greater ppt treatments. Concentrations of turbidity and TSS decreased rapidly between 1 and 12 h of sedimentation; very little decline was observed during the time intervals 12,72 h. Higher salinity treatments yielded settling patterns similar to the 2 ppt salinity treatment. After 1 h, turbidity was removed by 65% in the control compared with 85% salinity treated samples. Variations in turbidity and TSS among the three sediments suggest that finer particles, the Piedmont Plateau soils, settled at a slower rate than larger particles. This difference occurs because the percentage of turbidity and TSS removed was significantly higher in mineralized waters compared to freshwater. Therefore, a small amount of salt, 2 ppt, can be used in pond aquaculture treatments to reduce the turbidity and TSS concentrations in shrimp ponds. [source] A Statistical Estimator of the Spatial Distribution of the Water-Table AltitudeGROUND WATER, Issue 1 2003Nicasio Sepúlveda An algorithm was designed to statistically estimate the areal distribution of water-table altitude. The altitude of the water table was bounded below by the minimum water-table surface and above by the land surface. Using lake elevations and stream stages, and interpolating between lakes and streams, the minimum water-table surface was generated. A multiple linear regression among the minimum water-table altitude, the difference between land-surface and minimum water-table altitudes, and the water-level measurements from surficial aquifer system wells resulted in a consistently high correlation for all groups of physiographic regions in Florida. A simple linear regression between land-surface and water-level measurements resulted in a root-mean-square residual of 4.23 m, with residuals ranging from , 8.78 to 41.54 m. A simple linear regression between the minimum water table and the water-level measurements resulted in a root-mean-square residual of 1.45 m, with residuals ranging from ,7.39 to 4.10 m. The application of the multiple linear regression presented herein resulted in a root-mean-square residual of 1.05 m, with residuals ranging from , 5.24 to 5.63 m. Results from complete and partial F tests rejected the hypothesis of eliminating any of the regressors in the multiple linear regression presented in this study. [source] VIRGINIA USA WATER QUALITY, 1978 TO 1995: REGIONAL INTERPRETATION,JOURNAL OF THE AMERICAN WATER RESOURCES ASSOCIATION, Issue 3 2002Carl E. Zipper ABSTRACT: Nine surface water-quality variables were analyzed for trend at 180 Virginia locations over the 1978 to 1995 period. Median values and seasonal Kendall's tau, a trend indicator statistic, were generated for dissolved oxygen saturation (DO), biochemical oxygen demand (BOD), pH (PH), total residue (TR), nonfilterable residue (NFR), nitrate-nitrite nitrogen (NN), total Kjeldahl nitrogen (TKN), total phosphorus (TP), and fecal coliform (FC) at each location. Each location was assigned to one of four physiographic regions, and mean state and regional medians and taus were calculated. Widespread BOD and NFR improvements were detected and FC improvements occurred in the state's western regions. TR and TKN exhibited predominantly increasing trends at locations throughout the state. BOD, TKN, NFR, and TR medians were higher at coastal locations than in other regions. NN, TKN, and TR exhibited predominantly increasing trends in regions with high median concentrations, while declining trends predominated in regions with relatively high BOD, FC, and NFR medians. Appalachian locations exhibited the greatest regional water-quality improvements for BOD, FC, NFR, and TKN. Factors responsible for regional differences appear to include geology, land use, and landscape features; these factors vary regionally. [source] LANDSCAPE ATTRIBUTES AS CONTROLS ON GROITHD WATER NITRATE REMOVAL CAPACITY OF RIPARIAN ZONES,JOURNAL OF THE AMERICAN WATER RESOURCES ASSOCIATION, Issue 6 2001Arthur J. Gold ABSTRACT: Inherent site factors can generate substantial variation in the ground water nitrate removal capacity of riparian zones. This paper examines research in the glaciated Northeast to relate variability in ground water nitrate removal to site attributes depicted in readily available spatial databases, such as SSUIRGO. Linking site-specific studies of riparian ground water nitrate removal to spatial data can help target high-value riparian locations for restoration or protection and improve the modeling of watershed nitrogen flux. Site attributes, such as hydric soil status (soil wetness) and geomorphology, affect the interaction of nitrate-enriched ground water with portions of the soil ecosystem possessing elevated biogeochemical transformation rates (i.e., biologically active zones). At our riparian sites, high ground water nitrate-N removal rates were restricted to hydric soils. Geomorphology provided insights into ground water flowpaths. Riparian sites located on outwash and organic/alluvial deposits have high potential for nitrate-enriched ground water to interact with biologically active zones. In till deposits, ground water nitrate removal capacity may be limited by the high occurrence of surface seeps that markedly reduce the time available for biological transformations to occur within the riparian zone. To fully realize the value of riparian zones for nitrate retention, landscape controls of riparian nitrate removal in different climatic and physiographic regions must be determined and translated into available spatial databases. [source] |