Photosynthetically Active Radiation (photosynthetically + active_radiation)

Distribution by Scientific Domains
Distribution within Life Sciences


Selected Abstracts


PLASTICITY TO LIGHT CUES AND RESOURCES IN ARABIDOPSIS THALIANA: TESTING FOR ADAPTIVE VALUE AND COSTS

EVOLUTION, Issue 6 2000
Lisa A. Dorn
Abstract Plants shaded by neighbors or overhead foliage experience both a reduction in the ratio of red to far red light (R:FR), a specific cue perceived by phytochrome, and reduced photosynthetically active radiation (PAR), an essential resource. We tested the adaptive value of plasticity to crowding and to the cue and resource components of foliage shade in the annual plant Arabidopsis thaliana by exposing 36 inbred families from four natural populations to four experimental treatments: (1) high density, full sun; (2) low density, full sun; (3) low density, neutral shade; and (4) low density, low R:FR-simulated foliage shade. Genotypic selection analysis within each treatment revealed strong environmental differences in selection on plastic life-history traits. We used specific contrasts to measure plasticity to density and foliage shade, to partition responses to foliage shade into phytochrome-mediated responses to the R:FR cue and responses to PAR, and to test whether plasticity was adaptive (i.e., in the same direction as selection in each environment). Contrary to expectation, we found no evidence for adaptive plasticity to density. However, we observed both adaptive and maladaptive responses to foliage shade. In general, phytochrome-mediated plasticity to the R:FR cue of foliage shade was adaptive and counteracted maladaptive growth responses to reduced PAR. These results support the prediction that active developmental responses to environmental cues are more likely to be adaptive than are passive resource-mediated responses. Multiple regression analysis detected a few costs of adaptive plasticity and adaptive homeostasis, but such costs were infrequent and their expression depended on the environment. Thus, costs of plasticity may occasionally constrain the evolution of adaptive responses to foliage shade in Arabidopsis, but this constraint may differ among environments and is far from ubiquitous. [source]


Tolerance of Antarctic cyanobacterial mats to enhanced UV radiation

FEMS MICROBIOLOGY ECOLOGY, Issue 1 2001
Alison L. George
Abstract To assess the biological implications of ozone depletion over the Antarctic Peninsula, the ultraviolet (UV) regime of two Antarctic cyanobacterial communities (composed of Leptolyngbya sp. and Phormidium sp.) was manipulated using screens that cut out UV radiation and a lamp which enhanced the dose of UV-B radiation (280,315 nm). The biological response of the cyanobacterial mats was monitored by measurement of chlorophyll fluorescence and pigment concentrations. The Leptolyngbya mat showed significant photochemical inhibition due to increased UV-B relative to photosynthetically active radiation (400,700 nm). The effect of UV on the Phormidium mat was less pronounced and dependent on the method of analysis: significantly lower photochemical yields were observed in UV-enhanced Phormidium mats compared to UV-excluded treatment, but if the yield data relative to the time zero control were considered then no effect of UV enhancement was observed. The Phormidium mat contained over 25 times the absolute concentration of UV-protecting mycosporine-like amino acid (MAA) and double the concentration of carotenoids compared to the Leptolyngbya mat, but the latter contained a higher ratio of carotenoids+MAAs to chlorophyll. There were no significant treatment-related changes in the concentrations of MAA, carotenoids and chlorophyll a in the Phormidium mat. The Leptolyngbya mat showed significantly lower chlorophyll a concentrations under UV enhancement, which could account for the lower photochemical yield in this sample. Our results show that different cyanobacterial species have differing photochemical sensitivity to UV-B radiation, which may confer a subtle advantage to the UV-B tolerant species over the less tolerant type during a period of high UV-B irradiance. [source]


Catchment urbanisation and increased benthic algal biomass in streams: linking mechanisms to management

FRESHWATER BIOLOGY, Issue 6 2004
Sally L. Taylor
Summary 1. Urbanisation is an important cause of eutrophication in waters draining urban areas. We determined whether benthic algal biomass in small streams draining urban areas was explained primarily by small-scale factors (benthic light, substratum type and nutrient concentrations) within a stream, or by catchment-scale variables that incorporate the interacting multiple impacts of urbanisation (i.e. variables that describe urban density and the intensity of drainage or septic tank systems). 2. Benthic algal biomass was assessed as chlorophyll a density (chl a) in 16 streams spanning a rural,urban gradient, with both a wide range of urban density and of piped stormwater infrastructure intensity on the eastern fringe of metropolitan Melbourne, Australia. The gradient of urban density among streams was broadly correlated with catchment imperviousness, drainage connection (proportion of impervious areas connected to streams by stormwater pipes), altitude, longitude and median phosphorus concentration. Catchment area, septic tank density, median nitrogen concentration, benthic light (photosynthetically active radiation) and substratum type were not strongly correlated with the urban gradient. 3. Variation in benthic light and substratum type within streams explained a relatively small amount of variation in log chl a (3,11 and 1,13%, respectively) compared with between-site variation (39,54%). 4. Median chl a was positively correlated with catchment urbanisation, with a large proportion of variance explained jointly (as determined by hierarchical partitioning) by those variables correlated with urban density. Independent of this correlation, the contributions of drainage connection and altitude to the explained variance in chl a were significant. 5. The direct connection of impervious surfaces to streams by stormwater pipes is hypothesised as the main determinant of algal biomass in these streams through its effect on the supply of phosphorus, possibly in interaction with stormwater-related impacts on grazing fauna. Management of benthic algal biomass in streams of urbanised catchments is likely to be most effective through the application of stormwater management approaches that reduce drainage connection. [source]


Modulation of the bacterial response to spectral solar radiation by algae and limiting nutrients

FRESHWATER BIOLOGY, Issue 11 2002
J. M. Medina-Sánchez
SUMMARY 1. The response of bacterial production (measured as [3H]TdR incorporation rate) to spectral solar radiation was quantified experimentally in an oligotrophic high-mountain lake over 2 years. Bacterial responses were consistent: ultraviolet-B (UVB) was harmful, whereas ultraviolet-A (UVA) + photosynthetically active radiation (PAR) and PAR enhanced bacterial activity. Full sunlight exerted a net stimulatory effect on bacterial activity in mid-summer but a net inhibitory effect towards the end of the ice-free period. 2. Experiments were undertaken to examine whether the bacterial response pattern depended on the presence of algae and/or was modulated by the availability of a limiting inorganic nutrient (phosphorus, P). In the absence of algae, [3H]TdR incorporation rates were significantly lower than when algae were present under all light treatments, and the consistent bacterial response was lost. This suggests that the bacterial response to spectral solar radiation depends on fresh-C released from algae, which determines the net stimulatory outcome of damage and repair in mid-summer. 3. In the absence of algae, UVB radiation inhibited bacteria when they were strongly P-deficient (mean values of N : P ratio: 46.1), whereas it exerted no direct effect on bacterial activity when they were not P-limited. 4. P-enrichment of lake water markedly altered the response of bacteria to spectral solar radiation at the end of ice-free period, when bacteria were strongly P-deficient. Phosphorus enrichment suppressed the inhibitory effect of full sunlight that was observed in October, both in whole lake water (i.e. including algae) and in the absence of algae. This indicates that the bacterial P-deficiency, measured as the cellular N : P ratio, was partly responsible for the net inhibitory effect of full sunlight, implying a high bacterial vulnerability to UVB. [source]


Chilean high-altitude hot-spring sinters: a model system for UV screening mechanisms by early Precambrian cyanobacteria

GEOBIOLOGY, Issue 1 2006
V. R. PHOENIX
ABSTRACT Before the build-up of stratospheric ozone, Archean and early Proterozoic phototrophs existed in an environment subjected to highly elevated levels of ultraviolet (UV) radiation. Therefore, phototrophic life would have required a protective habitat that balanced UV attenuation and photosynthetically active radiation (PAR) transmission. Here we report on aspects of the phototroph geomicrobiology of El Tatio geothermal field, located at 4300 m in the Andes Mountains of northern Chile (22 °S), as an analogue system to early Precambrian environments. El Tatio microbes survive in a geochemical environment of rapidly precipitating amorphous silica (sinter) and unusually high solar radiation (including elevated UV-B flux) due to the high-altitude, low-latitude location. Cyanobacteria produce 10-mm-thick surface mats containing filaments encased in amorphous silica matrices up to 5 µm thick. Relative radiation absorbance of these silica matrices was UV-C > UV-B > UV-A > PAR, suggesting the silica provides a significant UV shield to the cyanobacteria. Cyanobacteria also occur in cryptoendolithic communities 1,10 mm below siliceous sinter surfaces, and in siliceous stromatolites, where viable cyanobacteria are found at least ,10 mm below the sinter surface. UV-B was dramatically attenuated within ,1 mm of the sinter surface, whereas UV-C (a frequency range absent today but present in the early Precambrian) was attenuated even more efficiently. PAR was attenuated the least, and minimum PAR levels required for photosynthesis penetrated 5,10 mm into the sinter. Thus, a favourable niche occurs between approximately 1,10 mm in siliceous sinters where there is a balance between PAR transmission and UV attenuation. These deposits also would have strongly attenuated Archean and early Precambrian levels of UV and thus, by analogy, cyanobacteria of early Precambrian shallow aquatic environments, inhabiting silicified biofilms and silica stromatolites, would have similarly been afforded protection against high-intensity UV radiation. [source]


Large annual net ecosystem CO2 uptake of a Mojave Desert ecosystem

GLOBAL CHANGE BIOLOGY, Issue 7 2008
GEORG WOHLFAHRT
Abstract The net ecosystem CO2 exchange (NEE) between a Mojave Desert ecosystem and the atmosphere was measured over the course of 2 years at the Mojave Global Change Facility (MGCF, Nevada, USA) using the eddy covariance method. The investigated desert ecosystem was a sink for CO2, taking up 102±67 and 110±70 g C m,2 during 2005 and 2006, respectively. A comprehensive uncertainty analysis showed that most of the uncertainty of the inferred sink strength was due to the need to account for the effects of air density fluctuations on CO2 densities measured with an open-path infrared gas analyser. In order to keep this uncertainty within acceptable bounds, highest standards with regard to maintenance of instrumentation and flux measurement postprocessing have to be met. Most of the variability in half-hourly NEE was explained by the amount of incident photosynthetically active radiation (PAR). On a seasonal scale, PAR and soil water content were the most important determinants of NEE. Precipitation events resulted in an initial pulse of CO2 to the atmosphere, temporarily reducing NEE or even causing it to switch sign. During summer, when soil moisture was low, a lag of 3,4 days was observed before the correlation between NEE and precipitation switched from positive to negative, as opposed to conditions of high soil water availability in spring, when this transition occurred within the same day the rain took place. Our results indicate that desert ecosystem CO2 exchange may be playing a much larger role in global carbon cycling and in modulating atmospheric CO2 levels than previously assumed , especially since arid and semiarid biomes make up >30% of Earth's land surface. [source]


Climatic controls on the carbon and water balances of a boreal aspen forest, 1994,2003

GLOBAL CHANGE BIOLOGY, Issue 3 2007
ALAN G. BARR
Abstract The carbon and water budgets of boreal and temperate broadleaf forests are sensitive to interannual climatic variability and are likely to respond to climate change. This study analyses 9 years of eddy-covariance data from the Boreal Ecosystem Research and Monitoring Sites (BERMS) Southern Old Aspen site in central Saskatchewan, Canada and characterizes the primary climatic controls on evapotranspiration, net ecosystem production (FNEP), gross ecosystem photosynthesis (P) and ecosystem respiration (R). The study period was dominated by two climatic extremes: extreme warm and cool springs, which produced marked contrasts in the canopy duration, and a severe, 3-year drought. Annual FNEP varied among years from 55 to 367 g C m,2 (mean 172, SD 94). Interannual variability in FNEP was controlled primarily by factors that affected the R/P ratio, which varied between 0.74 and 0.96 (mean 0.87, SD 0.06). Canopy duration enhanced P and FNEP with no apparent effect on R. The fraction of annual photosynthetically active radiation (PAR) that was absorbed by the canopy foliage varied from 38% in late leaf-emergence years to 51% in early leaf-emergence years. Photosynthetic light-use efficiency (mean 0.0275, SD 0.026 mol C mol,1 photons) was relatively constant during nondrought years but declined with drought intensity to a minimum of 0.0228 mol C mol,1 photons during the most severe drought year. The impact of drought on FNEP varied with drought intensity. Years of mild-to-moderate drought suppressed R while having little effect on P, so that FNEP was enhanced. Years of severe drought suppressed both R and P, causing either little change or a subtle reduction in FNEP. The analysis produced new insights into the dominance of canopy duration as the most important biophysical control on FNEP. The results suggested a simple conceptual model for annual FNEP in boreal deciduous forests. When water is not limiting, annual P is controlled by canopy duration via its influence on absorbed PAR at constant light-use efficiency. Water stress suppresses P, by reducing light-use efficiency, and R, by limiting growth and/or suppressing microbial respiration. The high photosynthetic light-use efficiency showed this site to be a highly productive boreal deciduous forest, with properties similar to many temperate deciduous forests. [source]


Interannual climatic variation mediates elevated CO2 and O3 effects on forest growth

GLOBAL CHANGE BIOLOGY, Issue 6 2006
MARK E. KUBISKE
Abstract We analyzed growth data from model aspen (Populus tremuloides Michx.) forest ecosystems grown in elevated atmospheric carbon dioxide ([CO2]; 518 ,L L,1) and ozone concentrations ([O3]; 1.5 × background of 30,40 nL L,1 during daylight hours) for 7 years using free-air CO2 enrichment technology to determine how interannual variability in present-day climate might affect growth responses to either gas. We also tested whether growth effects of those gasses were sustained over time. Elevated [CO2] increased tree heights, diameters, and main stem volumes by 11%, 16%, and 20%, respectively, whereas elevated ozone [O3] decreased them by 11%, 8%, and 29%, respectively. Responses similar to these were found for stand volume and basal area. There were no growth responses to the combination of elevated [CO2+O3]. The elevated [CO2] growth stimulation was found to be decreasing, but relative growth rates varied considerably from year to year. Neither the variation in annual relative growth rates nor the apparent decline in CO2 growth response could be explained in terms of nitrogen or water limitations. Instead, growth responses to elevated [CO2] and [O3] interacted strongly with present-day interannual variability in climatic conditions. The amount of photosynthetically active radiation and temperature during specific times of the year coinciding with growth phenology explained 20,63% of the annual variation in growth response to elevated [CO2] and [O3]. Years with higher photosynthetic photon flux (PPF) during the month of July resulted in more positive growth responses to elevated [CO2] and more negative growth responses to elevated [O3]. Mean daily temperatures during the month of October affected growth in a similar fashion the following year. These results indicate that a several-year trend of increasingly cloudy summers and cool autumns were responsible for the decrease in CO2 growth response. [source]


Site-level evaluation of satellite-based global terrestrial gross primary production and net primary production monitoring

GLOBAL CHANGE BIOLOGY, Issue 4 2005
David P. Turner
Abstract Operational monitoring of global terrestrial gross primary production (GPP) and net primary production (NPP) is now underway using imagery from the satellite-borne Moderate Resolution Imaging Spectroradiometer (MODIS) sensor. Evaluation of MODIS GPP and NPP products will require site-level studies across a range of biomes, with close attention to numerous scaling issues that must be addressed to link ground measurements to the satellite-based carbon flux estimates. Here, we report results of a study aimed at evaluating MODIS NPP/GPP products at six sites varying widely in climate, land use, and vegetation physiognomy. Comparisons were made for twenty-five 1 km2 cells at each site, with 8-day averages for GPP and an annual value for NPP. The validation data layers were made with a combination of ground measurements, relatively high resolution satellite data (Landsat Enhanced Thematic Mapper Plus at ,30 m resolution), and process-based modeling. There was strong seasonality in the MODIS GPP at all sites, and mean NPP ranged from 80 g C m,2 yr,1 at an arctic tundra site to 550 g C m,2 yr,1 at a temperate deciduous forest site. There was not a consistent over- or underprediction of NPP across sites relative to the validation estimates. The closest agreements in NPP and GPP were at the temperate deciduous forest, arctic tundra, and boreal forest sites. There was moderate underestimation in the MODIS products at the agricultural field site, and strong overestimation at the desert grassland and at the dry coniferous forest sites. Analyses of specific inputs to the MODIS NPP/GPP algorithm , notably the fraction of photosynthetically active radiation absorbed by the vegetation canopy, the maximum light use efficiency (LUE), and the climate data , revealed the causes of the over- and underestimates. Suggestions for algorithm improvement include selectively altering values for maximum LUE (based on observations at eddy covariance flux towers) and parameters regulating autotrophic respiration. [source]


Interactive effects of elevated CO2 and soil fertility on isoprene emissions from Quercus robur

GLOBAL CHANGE BIOLOGY, Issue 11 2004
Malcolm Possell
Abstract The effects of global change on the emission rates of isoprene from plants are not clear. A factor that can influence the response of isoprene emission to elevated CO2 concentrations is the availability of nutrients. Isoprene emission rate under standard conditions (leaf temperature: 30°C, photosynthetically active radiation (PAR): 1000 ,mol photons m,2 s,1), photosynthesis, photosynthetic capacity, and leaf nitrogen (N) content were measured in Quercus robur grown in well-ventilated greenhouses at ambient and elevated CO2 (ambient plus 300 ppm) and two different soil fertilities. The results show that elevated CO2 enhanced photosynthesis but leaf respiration rates were not affected by either the CO2 or nutrient treatments. Isoprene emission rates and photosynthetic capacity were found to decrease with elevated CO2, but an increase in nutrient availability had the converse effect. Leaf N content was significantly greater with increased nutrient availability, but unaffected by CO2. Isoprene emission rates measured under these conditions were strongly correlated with photosynthetic capacity across the range of different treatments. This suggests that the effects of CO2 and nutrient levels on allocation of carbon to isoprene production and emission under near-saturating light largely depend on the effects on photosynthetic electron transport capacity. [source]


Land-use impact on ecosystem functioning in eastern Colorado, USA

GLOBAL CHANGE BIOLOGY, Issue 6 2001
J. M. Paruelo
Abstract Land-cover change associated with agriculture has had an enormous effect on the structure and functioning of temperate ecosystems. However, the empirical evidence for the impact of land use on ecosystem functioning at the regional scale is scarce. Most of our knowledge on land-use impact has been derived from simulation studies or from small plot experiments. In this article we studied the effects of land use on (i) the seasonal dynamics and (ii) the interannual variability of the Normalized Difference Vegetation Index (NDVI), a variable linearly related to the fraction of the photosynthetically active radiation (PAR) intercepted by the canopy. We also analysed the relative importance of environmental factors and land use on the spatial patterns of NDVI. We compared three cultivated land-cover types against native grasslands. The seasonal dynamics of NDVI was used as a descriptor of ecosystem functioning. In order to reduce the dimensionality of our data we analysed the annual integral (NDVI-I), the date of maximum NDVI (DMAX) and the quarterly average NDVI. These attributes were studied for 7 years and for 346 sites distributed across eastern Colorado (USA). Land use did modify ecosystem functioning at the regional level in eastern Colorado. The seasonal dynamics of NDVI, a surrogate for the fraction of PAR intercepted by the canopy, were significantly altered by agricultural practices. Land use modified both the NDVI integral and the seasonal dynamics of this spectral index. Despite the variability within land-cover categories, land use was the most important factor in explaining regional differences of the NDVI attributes analysed. Within the range of environmental conditions found in eastern Colorado, land use was more important than mean annual precipitation, mean annual temperature and soil texture in determining the seasonal dynamics of NDVI. [source]


Model predicting dynamics of biomass, structure and digestibility of herbage in managed permanent pastures.

GRASS & FORAGE SCIENCE, Issue 2 2006

Abstract To investigate seasonal and annual interactions between management and grassland dynamics, a simple mechanistic model of the dynamics of production, structure and digestibility in permanent pastures was constructed. The model is designed to respond to various defoliation regimes, perform multiple-year simulations and produce simple outputs that are easy to use as inputs for a model of ruminant livestock production. Grassland communities are described using a set of average functional traits of their constituent grass groups. The sward is subdivided into four structural compartments: green leaves and sheath, dead leaves and sheath, green stems and flowers, and dead stems and flowers. Each compartment is characterized by its biomass, age and digestibility. Only above-ground growth is modelled, using a light-utilization efficiency approach modulated by a seasonal pattern of storage and mobilization of reserves. Ageing of plant parts is driven by cumulative thermal time from 1 January and by biomass flows. Age affects senescence, abscission and digestibility of green compartments and, therefore, the quality of green leaves and stems can increase or decrease over time in relation to net growth and defoliation dynamics. The functional traits having the greatest impact on model outputs are seasonal effects, period of reproductive growth and effects of temperature on photosynthetic efficiency. The functional traits of the grass groups were parameterized for temperate pastures of the Auvergne region in France. The other model inputs are few: proportion of functional groups, basic weather data (incident photosynthetically active radiation, mean daily temperature, precipitation and potential evapotranspiration) and site characteristics (nitrogen nutrition index, soil water-holding capacity). In the context of a whole-farm simulator, the model can be applied at a field scale. [source]


Ecological play in the coevolutionary theatre: genetic and environmental determinants of attack by a specialist weevil on milkweed

JOURNAL OF ECOLOGY, Issue 6 2003
Anurag A. Agrawal
Summary 1We studied the genetic and environmental determinants of attack by the specialist stem-attacking weevil, Rhyssomatus lineaticollis on Asclepias syriaca. 2In natural populations, the extent of stem damage and oviposition were positively correlated with stem width, but not stem height. We hypothesized that both genotypic and environmental factors influencing stem morphology would affect attack by weevils. 3In a common garden study with 21 full-sib families of milkweed, both phenotypic and genetic correlations indicated that weevils impose more damage and lay more eggs on thicker stemmed plants. 4Of three other putative resistance traits, only latex production showed a negative genetic correlation with weevil attack. 5When neighbouring grasses were clipped to reduce light competition, focal milkweed plants received up to 2.6 times the photosynthetically active radiation and 1.6 times the red to far red ratio of light compared with plants with intact grass neighbours. Focal milkweed plants were therefore released from the classic neighbour avoidance response and had 20% shorter internode lengths, were 30% shorter, and had 90% thicker stems compared with controls. 6Clipping of grass neighbours resulted in nearly 2.7 times the damage and oviposition by stem weevils, thus supporting the hypothesis of an environmental or trait-mediated indirect influence on resistance. 7Although attack of plants by weevils strongly increases the probability of stem mortality, thicker stems experience lower mortality, thus counteracting the selective impact of weevil-induced plant mortality. 8The determinants of attack on milkweeds include both genetic variation for stem thickness and an indirect environmental influence of plant neighbours. If milkweeds and weevils are coevolving, the interaction is diffuse because the ecological neighbourhood is likely to modify the patterns of reciprocal natural selection. [source]


Environmental variation, vegetation distribution, carbon dynamics and water/energy exchange at high latitudes

JOURNAL OF VEGETATION SCIENCE, Issue 3 2002
A.D. McGuire
Abstract. The responses of high latitude ecosystems to global change involve complex interactions among environmental variables, vegetation distribution, carbon dynamics, and water and energy exchange. These responses may have important consequences for the earth system. In this study, we evaluated how vegetation distribution, carbon stocks and turnover, and water and energy exchange are related to environmental variation spanned by the network of the IGBP high latitude transects. While the most notable feature of the high latitude transects is that they generally span temperature gradients from southern to northern latitudes, there are substantial differences in temperature among the transects. Also, along each transect temperature co-varies with precipitation and photosynthetically active radiation, which are also variable among the transects. Both climate and disturbance interact to influence latitudinal patterns of vegetation and soil carbon storage among the transects, and vegetation distribution appears to interact with climate to determine exchanges of heat and moisture in high latitudes. Despite limitations imposed by the data we assembled, the analyses in this study have taken an important step toward clarifying the complexity of interactions among environmental variables, vegetation distribution, carbon stocks and turnover, and water and energy exchange in high latitude regions. This study reveals the need to conduct coordinated global change studies in high latitudes to further elucidate how interactions among climate, disturbance, and vegetation distribution influence carbon dynamics and water and energy exchange in high latitudes. [source]


Turbid flow through a tropical reservoir (Lake Dalrymple, Queensland, Australia): Responses to a summer storm event

LAKES & RESERVOIRS: RESEARCH AND MANAGEMENT, Issue 4 2000
John W. Faithful
Abstract The first flood event following a prolonged dry period is described for an impoundment, Lake Dalrymple, in tropical north-eastern Australia. The event, in January 1996, generated substantial flow in the two main inflow sources: the Burdekin River from the north and the Suttor River from the south. Flow through the Burdekin River peaked early and then subsided to a lower level, but flow through the Suttor River persisted at a moderate level for over 15 days after the initial inflow. An extensive water quality survey was conducted on 16 January 1996 (seven days after the initial dam overflow) to determine the nature of the inflows originating from the two major subcatchments feeding the reservoir as they entered and passed through the impoundment. The inflow comprising waters of high turbidity and low conductivity occupied the mid-column region along the two major inflow channels through the impoundment to the dam wall. The suspended particulate material in the form of silt and clay sized particles remained in suspension as the flow passed through the reservoir, due in part to the low ionic strength of the inflow and the relative densities of the inflowing and receiving waters. For both river sources, more than 50% of the total nitrogen and almost all of the total phosphorus were bound to the suspended particulate matter. Much of this was exported in the flow over the spillway. The highly turbid nature of the inflow resulted in strong attenuation of down-welling photosynthetically active radiation (up to maximum attenuation values of 12.24 m,1 in the reservoir where the euphotic depth was only 0.38 m). The irradiance reflectance and the scattering coefficient were considerably higher than any reported for other Australian inland waters. Concentrations of viable chlorophyll a in the surface waters were very low (maximum value 3.4 ,g L,1) because of the highly turbid conditions and extensive dilution by the inflow. The results of this study provide an example of the significant impact a large inflow of turbid, low conductance water can have on a large reservoir in the arid tropics following a prolonged dry period. During inflow events such as the one described in this paper, the reservoir becomes riverine in nature, and large amounts of suspended particulate matter and associated nutrients are transported through the reservoir. [source]


Ultraviolet Radiation Induces Filamentation in Bacterial Assemblages from North Andean Patagonian Lakes

PHOTOCHEMISTRY & PHOTOBIOLOGY, Issue 4 2010
Beatriz Modenutti
Through laboratory experiments, we tested whether UV radiation (UVR) induces filamentation in natural bacteria assemblages from North Andean Patagonian lakes. We incubated water from three different lakes for 72 h in four separate treatments: (1) UVR + PAR (photosynthetically active radiation), (2) 50% UVR + PAR, (3) PAR and (4) 50% PAR. The irradiance levels used in the experiments were equivalent to those registered at the epilimnion of the lakes. In the UVR treatments filamentation was induced after the first 24 h and the proportion continued to increase for the next 48,72 h. A comparison of the gross composition and diversity of the entire community (cells >0.2 ,m) with bacterial filaments alone (>5.0 ,m) showed that UVR-induced filamentation is not a feature of any particular cluster. By sequencing part of the 16S rRNA gene of the taxonomic units obtained using denaturing gels, we observed that strains in the ,-Proteobacteria group were of relatively high importance in filament formation, followed by Cytophaga,Flavobacterium,Bacteroides, ,-Proteobacteria and ,-Proteobacteria, whereas Actinobacteria were almost nonexistent in the filaments. We propose that UVR doses equivalent to those of Andean lakes produce bacterial morphological changes, and that all bacterial groups except Actinobacteria can potentially form filaments. [source]


Antioxidative Responses of Two Marine Microalgae During Acclimation to Static and Fluctuating Natural UV Radiation

PHOTOCHEMISTRY & PHOTOBIOLOGY, Issue 6 2009
Paul J. Janknegt
Photoacclimation properties were investigated in two marine microalgae exposed to four ambient irradiance conditions: static photosynthetically active radiation (PAR: 400,700 nm), static PAR + UVR (280,700 nm), dynamic PAR and dynamic PAR + UVR. High light acclimated cultures of Thalassiosira weissflogii and Dunaliella tertiolecta were exposed outdoors for a maximum of 7 days. Dynamic irradiance was established by computer controlled vertical movement of 2 L bottles in a water filled basin. Immediate (<24 h), short-term (1,3 days) and long-term (4,7 days) photoacclimation was followed for antioxidants (superoxide dismutase, ascorbate peroxidase and glutathione cycling), growth and pigment pools. Changes in UVR sensitivity during photoacclimation were monitored by measuring UVR-induced inhibition of carbon assimilation under standardized UV conditions using an indoor solar simulator. Both species showed immediate antioxidant responses due to their transfer to the outdoor conditions. Furthermore, upon outdoor exposure, carbon assimilation and growth rates were reduced in both species compared with initial conditions; however, these effects were most pronounced in D. tertiolecta. Outdoor UV exposure did not alter antioxidant levels when compared with PAR-only controls in both species. In contrast, growth was significantly affected in the static UVR cultures, concurrent with significantly enhanced UVR resistance. We conclude that antioxidants play a minor role in the reinforcement of natural UVR resistance in T. weissflogii and D. tertiolecta. [source]


Solar Radiation-induced Mortality of Marine Pico-phytoplankton in the Oligotrophic Ocean,

PHOTOCHEMISTRY & PHOTOBIOLOGY, Issue 4 2007
Susana Agustí
ABSTRACT We examined the response of pico-phytoplankton communities sampled at the equatorial, tropical and temperate Central Atlantic Ocean to subsurface underwater solar radiation in order to test the generality of the reported cell mortality for these populations when exposed to high ultra violet radiation (UVR) and photosynthetically active radiation. The natural communities of pico-phytoplankton populations tested experienced high cell mortality when exposed to high solar radiation, despite inhabiting tropical waters. Synechococcus and eukaryotes were more resistant to solar radiation than Prochlorococcus. The decay rates of all pico-phytoplankton groups examined tended to be much higher when exposed to total solar radiation than when UVB-R was filtered out. We also show that even short exposures of 30 min to high solar radiation were able to induce cell mortality in Prochlorococcus. The variability in the decay rates of living Prochlorococcus cells were strongly related to the condition of the original population. However, Synechococcus decay rates were higher in populations from the tropical area, with eukaryotes sensitivity increasing with increasing the trophic degree. The data reported in this study and in the literature revealed contrasting capacities of Prochlorococcus, Synechococcus and eukaryotes to survive under high solar radiation. Although the mechanisms involved are as yet unclear, their elucidation may help explain niche partitioning among these organisms in the ocean. [source]


Variability of UVR Effects on Photosynthesis of Summer Phytoplankton Assemblages from a Tropical Coastal Area of the South China Sea,

PHOTOCHEMISTRY & PHOTOBIOLOGY, Issue 4 2007
Kunshan Gao
From June to September 2005, we carried out experiments to determine the ultraviolet radiation (UVR) -induced photoinhibition of summer phytoplankton assemblages from a coastal site of the South China Sea. Variability in taxonomic composition was determined throughout the summer, with a peak chlorophyll a (chl a,20 ,g chl a L,1) dominated by the diatom Skeletonema costatum that was detected early in the study period; the rest of the time samples were characterized by monads and flagellates, with low chl a values (1,5 chl a ,g L,1). Surface water samples were placed in quartz tubes, inoculated with radiocarbon and exposed to solar radiation for 2,3 h to determine photosynthetic rates under three quality radiation treatments (i.e. PAB, 280,700 nm; PA, 320,700 nm and P, 400,700 nm) using different filters and under seven levels of ambient irradiance using neutral density screens (PvsE curves). UVR inhibition of samples exposed to maximum irradiance (i.e. at the surface) varied from ,12.2% to 50%, while the daytime-integrated UVR-related photoinhibition in surface seawater varied from ,62% to 7%. The effects of UVR on the photosynthetic parameters PBmax and Ek were also variable, but UV-B accounted for most of the observed variability. During sunny days, photosynthesis of microplankton (>20 ,m) and piconanoplankton (<20 ,m) were significantly inhibited by UVR (mostly by UV-B). However, during cloudy days, while piconanoplankton cells were still inhibited by UVR, microplankton cells used UVR (mostly UV-A) as the source of energy for photosynthesis, resulting in higher carbon fixation in samples exposed to UVR than the ones exposed only to photosynthetically active radiation (PAR). Our results indicate that size structure and cloudiness clearly condition the overall impact of UVR on phytoplankton photosynthesis in this tropical site of South China. In addition, model predictions for this area considering only PAR for primary production might have underestimated carbon fixation due to UVR contribution. [source]


PAR and UV Effects on Vertical Migration and Photosynthesis in Euglena gracilis,

PHOTOCHEMISTRY & PHOTOBIOLOGY, Issue 4 2007
Peter Richter
Recently it was shown that the unicellular flagellate Euglena gracilis changes the sign of gravitaxis from negative to positive upon excessive radiation. This sign change persists in a cell culture for hours even if subsequently transferred to dim light. To test the ecological relevance of this behavior, a vertical column experiment was performed (max. depth 65 cm) to test distribution, photosynthetic efficiency and motility in different horizons of the column (surface, 20, 40 and 65 cm). One column was covered with a UV cut-off filter, which transmits photosynthetically active radiation (PAR) only, the other with a filter which transmits PAR and UV. The columns were irradiated with a solar simulator (PAR 162 W m,2, UV-A 32.6 W m,2, UV-B 1.9 W m,2). The experiment was conducted for 10 days, normally with a light/dim light cycle of 12 h:12 h, but in some cases the light regime was changed (dim light instead of full radiation). Under irradiation the largest fraction of cells was found at the bottom of the column. The cell density decreased toward the surface. Photosynthetic efficiency, determined with a pulse amplitude modulated fluorometer, was negligible at the surface and increased toward the bottom. While the cell suspension showed a positive gravitaxis at the bottom, the cells in the 40 cm horizon were bimodally oriented (about the same percentage of cells swimming upward and downward, respectively). At 20 cm and at the surface the cells showed negative gravitaxis. Positive gravitaxis was more pronounced in the UV + PAR samples. At the surface and in the 20 and 40 cm horizons photosynthetic efficiency was better in the PAR-only samples than in the PAR + UV samples. At the bottom photosynthetic efficiency was similar in both light treatments. The data suggest that high light reverses gravitaxis of the cells, so that they move downward in the water column. At the bottom the light intensity is lower (attenuation of the water column and self shading of the cells) and the cells recover. After recovery the cells swim upward again until the negative gravitaxis is reversed again. [source]


Physiological Responses of Acropora cervicornis to Increased Solar Irradiance,

PHOTOCHEMISTRY & PHOTOBIOLOGY, Issue 4 2007
Juan L. Torres
ABSTRACT The effects of increased UV radiation (UV-B [280,320 nm] + UV-A [320,400 nm]; hereafter UVR) on the growth, production of photosynthetic pigments and photoprotective mycosporine-like amino acids (MAAs) were studied in the threatened Caribbean coral Acropora cervicornis transplanted from 20 to 1 m depth in La Parguera, Puerto Rico. The UVR exposure by the transplanted colonies was significantly higher than that at 20 m, while photosynthetically active radiation (PAR) only increased by 9%. Photosynthetic pigments, quantified with HPLC, as well as linear extension rates and skeletal densities, were significantly reduced 1 month after transplantation to 1 m depth, while MAAs increased significantly despite immediate paling experienced by transplanted colonies. While these colonies showed a significant reduction in photosynthetic pigments, there were no significant reductions in zooxanthellae densities suggesting photoacclimation of the coral's symbionts to the new radiation conditions. The results suggest that while corals might be able to survive sudden increases in UVR and PAR, their skeletal structure can be greatly debilitated due to a reduction in the photosynthetic capacity of their symbionts and a possible relocation of resources. [source]


Interaction of UV Radiation and Inorganic Carbon Supply in the Inhibition of Photosynthesis: Spectral and Temporal Responses of Two Marine Picoplankters,

PHOTOCHEMISTRY & PHOTOBIOLOGY, Issue 2 2005
Cristina Sobrino
ABSTRACT The effect of ultraviolet radiation (UVR) on inhibition of photosynthesis was studied in two species of marine picoplankton with different carbon concentration mechanisms: Nannochloropsis gaditana Lubián possesses a bicarbonate uptake system and Nannochloris atomus Butcher a CO2 active transport system. Biological weighting functions (BWFs) for inhibition of photosynthesis by UVR and photosynthesis vs irradiance (PI) curves for photosynthetically active radiation (PAR) were estimated for both species grown with an enriched CO2 supply (high dissolved inorganic carbon [DIC]: 1% CO2 in air) and in atmospheric CO2 levels (low DIC: 0.03% CO2). The response to UVR and PAR exposures was different in each species depending on the DIC treatment. Under PAR exposure, rates of maximum photosynthesis were similar between treatments in N. gaditana. However, the cultures growing in high DIC had lower sensitivity to UVR than the low DIC cultures. In contrast, N. atomus had higher rates of photosynthesis under PAR exposure with high DIC, but the BWFs were not significantly different between treatments. The results suggest that one or more processes in N. gaditana associated with HCO3, transport are target(s) for UV photodamage because there was relatively less UV inhibition of the high DIC-grown cultures in which inorganic carbon fixation is supplied by passive CO2 diffusion. Time courses of photochemical efficiency in PAR, during UV exposure and during subsequent recovery in PAR, were determined using a pulse amplitude modulated fluorometer. The results were consistent with the BWFs. In all time courses, a steady state was obtained after an initial decrease, consistent with a dynamic balance between damage and repair as found for other phytoplankton. However, the relationship of response to exposure showed a steep decline in activity that is consistent with a constant rate of repair. A novel feature of a model developed from a constant repair rate is an explicit threshold for photosynthetic response to UV. [source]


Influence of PAR and UV-A in Determining Plant Sensitivity and Photomorphogenic Responses to UV-B Radiation ,,

PHOTOCHEMISTRY & PHOTOBIOLOGY, Issue 4 2004
Donald T. Krizek
ABSTRACT The role of photosynthetically active radiation (400-700 nm) (PAR) in modifying plant sensitivity and photomorphogenic responses to ultraviolet-B (280,320 nm) (UV-B) radiation has been examined by a number of investigators, but few studies have been conducted on ultraviolet-A (320-400 nm) (UV-A), UV-B and PAR interactions. High ratios of PAR-UV-B and UV-A-UV-B have been found to be important in ameliorating UV-B damage in both terrestrial and aquatic plants. Growth chamber and greenhouse studies conducted at low PAR, low UV-A and high UV-B often show exaggerated UV-B damage. Spectral balance of PAR, UV-A and UV-B has also been shown to be important in determining plant sensitivity in field studies. In general, one observes a reduction in total biomass and plant height with decreasing PAR and increasing UV-B. The protective effects of high PAR against elevated UV-B may also be indirect, by increasing leaf thickness and the concentration of flavonoids and other phenolic compounds known to be important in UV screening. The quality of PAR is also important, with blue light, together with UV-A radiation, playing a key role in photorepair of DNA lesions. Further studies are needed to determine the interactions of UV-A, UV-B and PAR. [source]


Influence of UV Radiation on Four Freshwater Invertebrates,

PHOTOCHEMISTRY & PHOTOBIOLOGY, Issue 5 2000
Alina Cywinska
ABSTRACT Laboratory tests confirmed a negative and variable response of the following four species to artificial UV radiation: Cypridopsis vidua, an ostracode; Chironomus riparius, a midge larvae; Hyalella azteca, an amphipod; and Daphnia magna, a daphnid. Severe damage occurred at UV-B irradiance ranging from 50 to 80% of incident summer values. Under constant exposure to UV and photosynthetically active radiation (PAR) the acute lethal response was recorded at 0.3, 0.8, 0.8 and 4.9 W m,2 UV-B for D. magna, H. azteca, C. riparius and C. vidua, respectively. Sublethal UV-B damage to invertebrates included impaired movement, partial paralysis, changes in pigmentation and altered water balance (bloating). A series of UV-B, UV-A and PAR treatments, applied separately and in combination, revealed a positive role for both UV-A and PAR in slowing down UV-B damage. Mean lethal concentration values of the species typically more tolerant to UV and PAR (Cypridopsis, Chironomus) decreased conspicuously when both UV-A and PAR were eliminated. For UV-B,sensitive species (Hyalella, Daphnia) these differences were notably smaller. We suggest that this gradation of sensitivity among the tested species demonstrates potential differences in repairing mechanisms which seem to work more efficiently for ostracodes and chironomids than for amphipods and daphnids. Manipulations with a cellulose acetate filter showed that lower range UV-B (280,290 nm), produced by FS-40 lamps, may cause excessive UV damage to invertebrates. [source]


Abscisic acid is involved in the response of grape (Vitis vinifera L.) cv. Malbec leaf tissues to ultraviolet-B radiation by enhancing ultraviolet-absorbing compounds, antioxidant enzymes and membrane sterols

PLANT CELL & ENVIRONMENT, Issue 1 2010
FEDERICO J. BERLI
ABSTRACT We investigated the interactions of abscisic acid (ABA) in the responses of grape leaf tissues to contrasting ultraviolet (UV)-B treatments. One-year-old field-grown plants of Vitis vinifera L. were exposed to photosynthetically active radiation (PAR) where solar UV-B was eliminated by using polyester filters, or where PAR was supplemented with UV-B irradiation. Treatments combinations included weekly foliar sprays of ABA or a water control. The levels of UV-B absorbing flavonols, quercetin and kaempferol were significantly decreased by filtering out UV-B, while applied ABA increased their content. Concentration of two hydroxycinnamic acids, caffeic and ferulic acids, were also increased by ABA, but not affected by plus UV-B (+UV-B) treatments. Levels of carotenoids and activities of the antioxidant enzymes, catalase, ascorbate peroxidase and peroxidase were elevated by +ABA treatments, but only if +UV-B was given. Cell membrane , -sitosterol was enhanced by ABA independently of +UV-B. Changes in photoprotective compounds, antioxidant enzymatic activities and sterols were correlated with lessened membrane harm by UV-B, as assessed by ion leakage. Oxidative damage expressed as malondialdehyde content was increased under +UV-B treatments. Our results suggest that the defence system of grape leaf tissues against UV-B is activated by UV-B irradiation with ABA acting downstream in the signalling pathway. [source]


Assessing the relationship between respiratory acclimation to the cold and photosystem II redox poise in Arabidopsis thaliana

PLANT CELL & ENVIRONMENT, Issue 12 2007
ANNA F. ARMSTRONG
ABSTRACT We examined the effect of manipulating photosystem II (PSII) redox poise on respiratory flux in leaves of Arabidopsis thaliana. Measurements were made on wild-type (WT) plants and npq4 mutant plants deficient in non-photochemical quenching (NPQ). Two experiments were carried out. In the first experiment, WT and mutant warm-grown plants were exposed to three different irradiance regimes [75, 150 and 300 µmol photosynthetically active radiation (PAR)], and leaf dark respiration was measured in conjunction with PSII redox poise. In the second experiment, WT and mutant warm-grown plants were shifted to 5 °C and 75, 150 or 300 µmol PAR, and dark respiration was measured alongside PSII redox poise in cold-treated and cold-developed leaves. Despite significant differences in PSII redox poise between genotypes and irradiance treatments, neither genotype nor growth irradiance had any effect upon the rate of respiration in warm-grown, cold-treated or cold-developed leaves. We conclude that changes in PSII redox poise, at least within the range experienced here, have no direct impacts on rates of leaf dark respiration, and that the respiratory cold acclimation response is unrelated to changes in chloroplast redox poise. [source]


The interaction of light quality and irradiance with gibberellins, cytokinins and auxin in regulating growth of Helianthus annuus hypocotyls

PLANT CELL & ENVIRONMENT, Issue 2 2007
LEONID V. KUREPIN
ABSTRACT A reduced red to far-red (R/FR) light ratio and low photosynthetically active radiation (PAR) irradiance are both strong signals for inducing etiolation growth of plant stems. Under natural field conditions, plants can be exposed to either a reduced R/FR ratio or lower PAR, or to a combination of both. We used Helianthus annuus L., the sunflower, to study the effect of reduced R/FR ratio, low PAR or their combination on hypocotyl elongation. To accomplish this, we attempted to uncouple light quality from light irradiance as factors controlling hypocotyl elongation. We measured alterations in the levels of endogenous gibberellins (GAs), cytokinins (CKs) and the auxin indole-3-acetic acid (IAA), and the effect of exogenous hormones on hypocotyl growth. As expected, both reduced R/FR ratio and lower PAR can significantly promote sunflower hypocotyl elongation when given separately. However, providing the reduced R/FR ratio at a low PAR resulted in the greatest hypocotyl growth, and this was accompanied by significantly higher levels of endogenous IAA, GA1, GA8, GA20 and of a wide range of CKs. Providing a reduced R/FR ratio under normal PAR also significantly increased growth and again gave significantly higher levels of endogenous IAA, GAs and CKs. However, only under the de-etiolating influence of a normal R/FR ratio did lowering PAR significantly increase levels of GA1, GA8 and GA20. We thus conclude that light quality (e.g. the R/FR ratio) is the most important component of shade for controlling hypocotyl growth and elevated growth hormone content. [source]


Assessing environmental and physiological controls over water relations in a Scots pine (Pinus sylvestris L.) stand through analyses of stable isotope composition of water and organic matter

PLANT CELL & ENVIRONMENT, Issue 1 2007
ELKE BRANDES
ABSTRACT This study investigated the influence of meteorological, pedospheric and physiological factors on the water relations of Scots pine, as characterized by the origin of water taken up, by xylem transport as well as by carbon isotope discrimination (,13C) and oxygen isotope enrichment (,18O) of newly assimilated organic matter. For more than 1 year, we quantified ,2H and ,18O of potential water sources and xylem water as well as ,13C and ,18O in twig and trunk phloem organic matter biweekly, and related these values to continuously measured or modelled meteorological parameters, soil water content, stand transpiration (ST) and canopy stomatal conductance (Gs). During the growing season, ,18O and ,2H of xylem water were generally in a range comparable to soil water from a depth of 2,20 cm. Long residence time of water in the tracheids uncoupled the isotopic signals of xylem and soil water in winter. ,18O but not ,13C in phloem organic matter was directly indicative of recent environmental conditions during the whole year. ,18O could be described applying a model that included 18O fractionation associated with water exchange between leaf and atmosphere, and with the production of organic matter as well as the influence of transpiration. Phloem ,13C was assumed to be concertedly influenced by Gs and photosynthetically active radiation (PAR) (as a proxy for photosynthetic capacity). We conclude that isotope signatures can be used as effective tools (1) to characterize the seasonal dynamics in source and xylem water, and (2) to assess environmental effects on transpiration and Gs of Scots pine, thus helping to understand and predict potential impacts of climate change on trees and forest ecosystems. [source]


Blue light inhibits stomatal development in soybean isolines containing kaempferol-3- O -2G -glycosyl-gentiobioside (K9), a unique flavonoid glycoside

PLANT CELL & ENVIRONMENT, Issue 8 2000
L. Liu-Gitz
ABSTRACT Stomata have a fundamental role in controlling plant photosynthesis and transpiration, but very little is known about factors controlling stomatal differentiation and development. Lines of soybean that contain a specific flavonol glycoside, kaempferol-3- O -2-glycosyl-gentiobioside (K9), as well as greatly reduced stomatal density, especially on the adaxial epidermis, have been identified. The specific effects of blue light photoreceptors on stomatal development in K9 lines and their isoline pairs containing no K9 were studied. Low irradiances of blue light (7% of total photosynthetically active radiation) added to high irradiances from low-pressure sodium lamps strongly inhibited stomatal development on the adaxial epidermis of K9 lines, but not in isoline pairs differing putatively in only one gene and lacking K9. Overall, blue light slightly increased stomatal density on the abaxial epidermis in all isolines, demonstrating differential regulation of stomatal development in the upper and lower epidermis. Blue light also caused an increase in leaf area in all isolines, indicating that changes in stomatal density were not the non-specific result of alterations in leaf area. Morphological studies revealed that the blue light-induced reduction in stomatal density in K9 lines was due to reduced stomatal initiation as well as aborted or abnormal stomatal development. As the phytochrome photostationary state was kept constant, the results indicate that one or more blue light receptors are involved in the control of stomatal development. This system should be useful for the study of mechanisms controlling stomatal development, even if the photo-inhibitory response is unique to K9 lines. [source]


Alternatives for Reintroducing a Rare Ecotone Species: Manually Thinned Forest Edge versus Restored Habitat Remnant

RESTORATION ECOLOGY, Issue 5 2009
Jennifer Possley
Abstract Species native to ecotones are often overlooked in restoration efforts despite the increasing rarity of ecotone habitat. In fragmented, fire-suppressed landscapes, true ecotone may no longer exist. Restoration biologists interested in reintroducing ecotone species must decide whether to plant them in historic ecotones maintained by manual thinning or whether to opt for discrete restoration areas that are easier to maintain. We investigated these two alternatives with Lantana canescens, a rare tropical shrub native to the ecotone between pine and hardwood forests of Miami-Dade County, Florida, U.S.A. Our short-term findings show that after 15 and 18 months, survival of transplants was 69% in a restored site and 65% and 84% in two historic ecotone sites. The restored site had significantly higher photosynthetically active radiation (PAR) (75%) than the historic ecotones (25,39%). Correspondingly, 267 seedlings have recruited at the restored site, whereas only 8 have emerged at both historic ecotone sites. Seedling establishment was associated with higher PAR at the restored site. We found that overall population sustainability was higher at the restored site where there is the additional benefit of less maintenance. Our work suggests that, by reducing succession, a discrete restoration area can approach the historic conditions of hardwood/pine forest ecotone more closely than degraded historic ecotones themselves. We present a viable solution for conserving rare ecotone species when their natural habitat and the processes that maintained it no longer exist. [source]