Home About us Contact | |||
Photosynthetic CO2 Uptake Rate (photosynthetic + co2_uptake_rate)
Selected AbstractsEffects of a 60 Hz magnetic field on photosynthetic CO2 uptake and early growth of radish seedlingsBIOELECTROMAGNETICS, Issue 8 2004Akira Yano Abstract Photosynthetic CO2 uptake rate and early growth parameters of radish Raphanus sativus L. seedlings exposed to an extremely low frequency magnetic field (ELF MF) were investigated. Radish seedlings were exposed to a 60 Hz, 50 ,Trms (root mean square) sinusoidal magnetic field (MF) and a parallel 48 ,T static MF for 6 or 15 d immediately after germination. Control seedlings were exposed to the ambient MF but not the ELF MF. The CO2 uptake rate of ELF MF exposed seedlings on day 5 and later was lower than that of the control seedlings. The dry weight and the cotyledon area of ELF MF exposed seedlings on day 6 and the fresh weight, the dry weight and the leaf area of ELF MF exposed seedlings on day 15 were significantly lower than those of the control seedlings, respectively. In another experiment, radish seedlings were grown without ELF MF exposure for 14 d immediately after germination, and then exposed to the ELF MF for about 2 h, and the photosynthetic CO2 uptake rate was measured during the short term ELF MF exposure. The CO2 uptake rate of the same seedlings was subsequently measured in the ambient MF (control) without the ELF MF. There was no difference in the CO2 uptake rate of seedlings exposed to the ELF MF or the ambient MF. These results indicate that continuous exposure to 60 Hz, 50 ,Trms sinusoidal MF with a parallel 48 ,T static MF affects the early growth of radish seedlings, but the effect is not so severe that modification of photosynthetic CO2 uptake can be observed during short term MF exposure. Bioelectromagnetics 25:572,581, 2004. © 2004 Wiley-Liss, Inc. [source] Will photosynthesis of maize (Zea mays) in the US Corn Belt increase in future [CO2] rich atmospheres?GLOBAL CHANGE BIOLOGY, Issue 6 2004An analysis of diurnal courses of CO2 uptake under free-air concentration enrichment (FACE) Abstract The C4 grass Zea mays (maize or corn) is the third most important food crop globally in terms of production and demand is predicted to increase 45% from 1997 to 2020. However, the effects of rising [CO2] upon C4 plants, and Z. mays specifically, are not sufficiently understood to allow accurate predictions of future crop production. A rainfed, field experiment utilizing free-air concentration enrichment (FACE) technology in the primary area of global corn production (US Corn Belt) was undertaken to determine the effects of elevated [CO2] on corn. FACE technology allows experimental treatments to be imposed upon a complete soil,plant,atmosphere continuum with none of the effects of experimental enclosures on plant microclimate. Crop performance was compared at ambient [CO2] (354 , mol mol,1) and the elevated [CO2] (549 ,mol mol,1) predicted for 2050. Previous laboratory studies suggest that under favorable growing conditions C4 photosynthesis is not typically enhanced by elevated [CO2]. However, stomatal conductance and transpiration are decreased, which can indirectly increase photosynthesis in dry climates. Given the deep soils and relatively high rainfall of the US Corn Belt, it was predicted that photosynthesis would not be enhanced by elevated [CO2]. The diurnal course of gas exchange of upper canopy leaves was measured in situ across the growing season of 2002. Contrary to the prediction, growth at elevated [CO2] significantly increased leaf photosynthetic CO2 uptake rate (A) by up to 41%, and 10% on average. Greater A was associated with greater intercellular [CO2], lower stomatal conductance and lower transpiration. Summer rainfall during 2002 was very close to the 50-year average for this site, indicating that the year was not atypical or a drought year. The results call for a reassessment of the established view that C4 photosynthesis is insensitive to elevated [CO2] under favorable growing conditions and that the production potential of corn in the US Corn Belt will not be affected by the global rise in [CO2]. [source] Ecophysiological and morphological parameters related to survival in grass species exposed to an extreme climatic eventPHYSIOLOGIA PLANTARUM, Issue 4 2005Ann Milbau An experiment was performed to elucidate interspecific differences in survival time of grass species subjected to an extreme climatic event. We exposed eight grass species to a simulated heat wave in the field (,free air' temperature increase at 11°C above ambient) combined with drought. We determined whether interspecific differences in survival time were related to the responses of the species to the imposed stress or could be explained by their ecophysiological or morphological characteristics in unstressed conditions. Surprisingly, there was no effect of specific leaf area, but species with a higher total leaf area survived longer. This may arise from a greater water reserve in the plant as a whole, which could delay the desiccation of the meristem, or from reduced evaporation due to a higher leaf area index. Species in which the decrease in light-saturated stomatal conductance (gs) and photosynthetic CO2 uptake rate (Amax) was strongly related to the decrease in soil water availability (measured as soil relative water content and stress duration) survived longer than species in which gs and Amax likewise declined but responded more to daily fluctuations in irradiance, temperature, and vapor pressure deficit during the heat wave. We, therefore, hypothesize that interspecific differences in stress survival time might be related to the extent to which stomata react to changes in soil water conditions relatively to changes in other environmental and physiological factors. The results suggest that resistance to extremes is governed by other mechanisms than resistance to moderate drought. [source] Would transformation of C3 crop plants with foreign Rubisco increase productivity?PLANT CELL & ENVIRONMENT, Issue 2 2004A computational analysis extrapolating from kinetic properties to canopy photosynthesis ABSTRACT Genetic modification of Rubisco to increase the specificity for CO2 relative to O2 (,) would decrease photorespiration and in principle should increase crop productivity. When the kinetic properties of Rubisco from different photosynthetic organisms are compared, it appears that forms with high , have low maximum catalytic rates of carboxylation per active site (kcc). If it is assumed that an inverse relationship between kcc and , exists, as implied from measurements, and that an increased concentration of Rubisco per unit leaf area is not possible, will increasing , result in increased leaf and canopy photosynthesis? A steady-state biochemical model for leaf photosynthesis was coupled to a canopy biophysical microclimate model and used to explore this question. C3 photosynthetic CO2 uptake rate (A) is either limited by the maximum rate of Rubisco activity (Vcmax) or by the rate of regeneration of ribulose-1,5-bisphosphate, in turn determined by the rate of whole chain electron transport (J). Thus, if J is limiting, an increase in , will increase net CO2 uptake because more products of the electron transport chain will be partitioned away from photorespiration into photosynthesis. The effect of an increase in , on Rubisco-limited photosynthesis depends on both kcc and the concentration of CO2 ([CO2]). Assuming a strict inverse relationship between kcc and ,, the simulations showed that a decrease, not an increase, in , increases Rubisco-limited photosynthesis at the current atmospheric [CO2], but the increase is observed only in high light. In crop canopies, significant amounts of both light-limited and light-saturated photosynthesis contribute to total crop carbon gain. For canopies, the present average , found in C3 terrestrial plants is supra-optimal for the present atmospheric [CO2] of 370 µmol mol,1, but would be optimal for a CO2 concentration of around 200 µmol mol,1, a value close to the average of the last 400 000 years. Replacing the average Rubisco of terrestrial C3 plants with one having a lower and optimal , would increase canopy carbon gain by 3%. Because there are significant deviations from the strict inverse relationship between kcc and ,, the canopy model was also used to compare the rates of canopy photosynthesis for several Rubiscos with well-defined kinetic constants. These simulations suggest that very substantial increases (> 25%) in crop carbon gain could result if specific Rubiscos having either a higher , or higher kcc were successfully expressed in C3 plants. [source] Effects of a 60 Hz magnetic field on photosynthetic CO2 uptake and early growth of radish seedlingsBIOELECTROMAGNETICS, Issue 8 2004Akira Yano Abstract Photosynthetic CO2 uptake rate and early growth parameters of radish Raphanus sativus L. seedlings exposed to an extremely low frequency magnetic field (ELF MF) were investigated. Radish seedlings were exposed to a 60 Hz, 50 ,Trms (root mean square) sinusoidal magnetic field (MF) and a parallel 48 ,T static MF for 6 or 15 d immediately after germination. Control seedlings were exposed to the ambient MF but not the ELF MF. The CO2 uptake rate of ELF MF exposed seedlings on day 5 and later was lower than that of the control seedlings. The dry weight and the cotyledon area of ELF MF exposed seedlings on day 6 and the fresh weight, the dry weight and the leaf area of ELF MF exposed seedlings on day 15 were significantly lower than those of the control seedlings, respectively. In another experiment, radish seedlings were grown without ELF MF exposure for 14 d immediately after germination, and then exposed to the ELF MF for about 2 h, and the photosynthetic CO2 uptake rate was measured during the short term ELF MF exposure. The CO2 uptake rate of the same seedlings was subsequently measured in the ambient MF (control) without the ELF MF. There was no difference in the CO2 uptake rate of seedlings exposed to the ELF MF or the ambient MF. These results indicate that continuous exposure to 60 Hz, 50 ,Trms sinusoidal MF with a parallel 48 ,T static MF affects the early growth of radish seedlings, but the effect is not so severe that modification of photosynthetic CO2 uptake can be observed during short term MF exposure. Bioelectromagnetics 25:572,581, 2004. © 2004 Wiley-Liss, Inc. [source] |