Home About us Contact | |||
Phytoplankton Composition (phytoplankton + composition)
Selected AbstractsDiel Changes in Phytoplankton Composition and Abundance in the Surface and Sub-Surface Strata from a Shallow Eutrophic PondINTERNATIONAL REVIEW OF HYDROBIOLOGY, Issue 1 2009bieta Wilk-Wo, niak Abstract Representative phytoplankton assemblages were identified in a eutrophic pond over a 24 hour period. One assemblage characterized species in the surface (neuston) layer and another consisted of algae from 2, 5, and 20 cm sub-surface depths. The surface layer (0 cm) included a similar, but less diverse assemblage of species, and a lower abundance of cells per unit volume, than those at the lower depths. At each of the sub-surface depths (2,20 cm), the major phytoplankton components initially followed similar patterns of abundance in reference to the time and depth of sample collections then later differed in their abundance levels. The dominant algae were chlorophytes, cryptophytes, diatoms, and cyanobacteria. Mean concentrations of total phytoplankton, over the 24 hours for the surface, were 3.3 × 103 cells ml,1, compared to 36.9 × 103 cells ml,1 for depths 2,20 cm. The autotrophic picoplankton abundance was recorded separately from the phytoplankton with mean concentrations of 472.9 × 103 cells ml,1 in the surface layer and 623.0 × 103 cells ml,1 for the three sub-surface depths. Photos of representative species from these surface layers are presented. (© 2009 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim) [source] Post-Impoundment Biomass and Composition of Phytoplankton in the Yangtze RiverINTERNATIONAL REVIEW OF HYDROBIOLOGY, Issue 3 2007Hui Zeng Abstract Damming, and thus alteration of stream flow, promotes higher phytoplankton populations and encourages algal blooms (density >106 cells L,1) in the Three Gorges Reservoir (TGR). Phytoplankton composition and biomass were studied in the Yangtze River from March 2004 to May 2005. 107 taxa were identified. Diatoms were the dominant group, followed by Chlorophyta and Cyanobacteria. In the Yangtze River, algal abundance varied from 3.13 × 103 to 3.83 × 106 cells L,1, and algal biomass was in the range of 0.06 to 659 mg C m,3. Levels of nitrogen, phosphorus and silica did not show consistent longitudinal changes along the river and were not correlated with phytoplankton parameters. Phytoplankton abundance was negatively correlated with main channel discharge (Spearman r = ,1.000, P < 0.01). Phytoplankton abundance and biomass in the Yangtze River are mainly determined by the hydrological conditions rather than by nutrient concentrations. (© 2007 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim) [source] Stoichiometric relationships in vernal pond plankton communitiesFRESHWATER BIOLOGY, Issue 7 2008CARLA E. CÁCERES Summary 1. The light-nutrient hypothesis (LNH) predicts that changes in light supply can alter the balance of nutrient and energy limitation in primary producers. We tested this prediction by examining temporal changes in vernal forest ponds, which are highly dynamic systems with respect to seasonal change in light and nutrient supply. In three vernal ponds that differ in productivity, we measured changes in light, total and seston nitrogen and phosphorus, and seston carbon and chlorophyll during the spring, before and after tree leaf-out. We also quantified changes in the population dynamics of the major zooplankton grazers in these systems. 2. In each pond, nutrient levels increased and light levels declined, creating a temporal shift in light-nutrient supply to the plankton. Results generally supported predictions of stoichiometric theory and the LNH, but there were notable exceptions. 3. Seston C : N : P ratios rapidly changed in response to dramatic increases in N and P supply rates. However, seston N : P was typically lower than values for total N : P in the water. Furthermore, as predicted, we observed a decline in seston C : P as the light : nutrient ratio declined, but seston C : N simultaneously increased. These results suggest an unexpected shift towards potential nitrogen limitation. Alternatively, this change in nutrient ratios may be driven by a seasonal change in phytoplankton composition or nutritional mode. 4. Seston carbon concentrations remained stable despite seasonal changes in grazing intensity associated with the phenology of large-bodied Daphnia grazers. However, chlorophyll concentrations declined dramatically as the season progressed, resulting in a simultaneous decline in the C : Chlorophyll ratio of seston. Both pond shading and increased grazing probably contributed to the decline in chlorophyll. [source] Impact of summer warming on the thermal characteristics of a polymictic lake and consequences for oxygen, nutrients and phytoplanktonFRESHWATER BIOLOGY, Issue 2 2008SUSANN WILHELM Summary 1. The impact of long thermal stratification events on some key properties in a polymictic lake was studied by determining the mixing regime of Müggelsee, Germany, using water temperature profiles taken hourly over 4 years. The period included two exceptional summer heatwaves. 2. Long thermal stratification events lasted from about 1 week to 2 months, and exhibited a high variability in thermocline depth and stratification intensity within and between events. 3. During stratification events, hypolimnetic oxygen concentrations strongly decreased while hypolimnetic SRP accumulation increased, depending on the duration and intensity of stratification and on hypolimnetic water temperature. 4. The impact of stratification on the functional phytoplankton composition increased with increasing stratification duration, but was rather different for the heatwaves. 5. Stratification events were followed by strong nutrient pulses into the euphotic zone and intense phytoplankton growth, particularly after the heatwaves. Hence, the influence of the climate extremes counteracted effects of reduced external nutrient loading. [source] Phosphorus decrease and climate variability: mediators of synchrony in phytoplankton changes among European peri-alpine lakesFRESHWATER BIOLOGY, Issue 10 2005ORLANE ANNEVILLE Summary 1. In an attempt to discern long-term regional patterns in phytoplankton community composition we analysed data from five deep peri-alpine lake basins that have been included in long-term monitoring programmes since the beginning of the 1970s. Local management measures have led to synchronous declines in phosphorus concentrations by more than 50% in all four lakes. Their trophic state now ranges from mesotrophic to oligotrophic. 2. No coherence in phytoplankton biomass was observed among lakes, or any significant decrease in response to phosphorus (P)-reduction (oligotrophication), except in Lakes Constance and Walen. 3. Multivariate analyses identified long-term changes in phytoplankton composition, which occurred coherently in all lakes despite the differing absolute phosphorus concentrations. 4. In all lakes, the phytoplankton species benefiting from oligotrophication included mixotrophic species and/or species indicative of oligo-mesotrophic conditions. 5. A major change in community composition occurred in all lakes at the end of the 1980s. During this period there was also a major shift in climatic conditions during winter and early spring, suggesting an impact of climatic factors. 6. Our results provide evidence that synchronous long-term changes in geographically separated phytoplankton communities may occur even when overall biomass changes are not synchronous. [source] Phytoplankton below the ice cover in Lake Teletskoye, a deep oligotrophic lake in western SiberiaLAKES & RESERVOIRS: RESEARCH AND MANAGEMENT, Issue 3 2007Elena Y. Mitrofanova Abstract The composition, biomass and pigments of the phytoplankton population below the ice cover in Lake Teletskoye were investigated in March 2006. It was found that the composition and biomass of phytoplankton below the ice remained the same throughout the year. Furthermore, the stability of the water column was more important for the development of the phytoplankton assemblage below the ice than was the water temperature and light intensity. Small flagellates and diatoms were abundant among the algae in the upper layers of the lake's water column. Lake Teletskoye is similar in its phytoplankton composition and algal distribution throughout the water column to large, deep temperate lakes and Arctic or Antarctic lakes covered temporally or perennially by ice. [source] Restoration of Lake Geneva: Expected versus observed responses of phytoplankton to decreases in phosphorusLAKES & RESERVOIRS: RESEARCH AND MANAGEMENT, Issue 2 2002Orlane Anneville Abstract Long-term phytoplankton responses in Lake Geneva to a decline in phosphorus (P) loading are examined in terms of summer (July,September) biomass and community structure. With the rapid development of human activity on its banks and within its catchment area in the 1960s, this large subalpine hydrosystem shifted from oligotrophy to eutrophy within approximately one decade. Measures to reduce P loading were initiated successfully in the mid-1970s, when total P concentrations in the winter overturn altered from 90 ,g/L in 1980 to 40 ,g/L in 1998. Until the 1990s, algal descriptors improved as expected (biomass decline, reappearance of diatom species, increased contribution of nanoplankton). Then, paradoxically, and in contrast to the reappearance of oligotrophic species, summer algal biomass began to increase. Pre-summer (period prior to the beginning of the clear water phase) dissolved inorganic phosphorus concentrations and summer phytoplankton composition presented similar interannual trends. However, the succession of phytoplankton structure during the reoligotrophication phase differed greatly from that during the eutrophication period, and a recent abnormal upward trend in algal densities is mainly the result of the development of large species that formerly were only common from late September until November. This community change, mainly triggered by filamentous (Mougeotia gracillima, Tribonema) or motile forms (Dinobryon sociale, Cryptophycea), seems to have been induced by the earlier and greater deepening of the P-depleted layer. In addition to milder summers, this massive development of larger forms seems to be favoured by four of their biological features: tolerance to warm temperatures, tolerance to low-light intensity (might exploit deeper layers where P is not yet limiting), shapes not only providing a large surface to volume ratio or motility (adaptation to low-nutrient concentrations), but increasing resistance to zooplankton grazing. This paradoxical trend, perhaps reinforced by the decline on roach Rutilus rutilus abundance (an opportunistic planktivore), is likely to remain until the P-depleted zone is extended below the layers that can be frequently resupplied in nutrients by hydrodynamic processes. [source] |