Phragmites Australis (phragmites + australi)

Distribution by Scientific Domains


Selected Abstracts


Can late summer Landsat data be used for locating Asian migratory locust, Locusta migratoria migratoria, oviposition sites in the Amudarya River delta, Uzbekistan?

ENTOMOLOGIA EXPERIMENTALIS ET APPLICATA, Issue 2 2008
Ramesh Sivanpillai
Abstract Existing survey methods for assessing the Asian migratory locust, Locusta migratoria migratoria L. (Orthoptera: Acrididae), infestation risk in the Amudarya River delta, Uzbekistan, are largely constrained by economic resources and site accessibility. The surveys are restricted to a few easily accessible areas, which leads to a misinterpretation of the threat of locust infestation. This often results in indiscriminate blanket treatments of vast areas of wetlands with broad-spectrum insecticides, which may adversely impact non-target fauna and flora. In order to minimize the bias during surveys, one approach would be to allocate the sampling locations based on the distribution of the primary food and shelter plant of the locusts, the common reed, Phragmites australis (Cav.) Trin. ex Steud (Poaceae). In this study, we evaluated the utility of satellite-based remotely sensed data (Landsat TM) acquired in August 2006 to characterize reed distribution in the delta and identify potential locust oviposition sites. The overall accuracy of the Landsat data to map land cover classes in the delta was 84%. The Landsat TM data identified 90% of the reeds, but it was less useful in identifying areas where other vegetations (shrubs and grasses) were mixed with reeds. During the following summer field survey in June 2007, we identified 37 sites that were infested with early-instar locusts. The low migration capacity of young nymphs in dense reed vegetation allowed us to presume that these sites were used for oviposition in the previous summer. Twenty-eight (74%) of these 37 sites had reeds in the previous year. Results from these studies demonstrate that reed distribution maps derived from satellite data could be used for targeting locust egg-pod survey locations, in order to minimize sampling bias while predicting locust infestation risks for the following season. [source]


Plants, gall midges, and fungi: a three-component system

ENTOMOLOGIA EXPERIMENTALIS ET APPLICATA, Issue 1 2008
Odette Rohfritsch
Abstract Larvae of gall midges (Diptera: Cecidomyiidae) induce the activation of plant cells, partial cell lysis, and differentiation of nutritive tissue. Specialized nutritive tissue is essential for larval development and plays a key role in gall organization. Midges of the tribes Lasiopterini and Asphondyliini, however, do not induce nutritive tissues as part of the formation of their galls. Instead, these ,ambrosia galls' contain fungal mycelia that line the interior surface of the chambers. The fungi not only provide Lasiopterini with nutrition, they also penetrate the stems, induce the lysis of the middle lamella of host cells, and open a channel to the vascular bundles. Larvae of Lasioptera arundinis (Schiner) (Lasiopterini) follow the fungus and feed on its mycelium along with adjoining stem cells of Phragmites australis (Cav.) Trin. (Poaceae). Eggs together with fungal conidia are deposited by the imago on the host. Asphondyliini use a needle-like ovipositor to introduce fungal conidia and eggs into the organs they attack. Larvae of Schizomyia galiorum Kieffer (Asphondyliini) are unable to initiate the gall or to develop in the flowers of Galium mollugo L. (Rubiaceae) without their fungal associate. In this article, I provide an overview of oviposition behaviour in the Asphondyliini, as well as descriptions of the ovipositor and the female post-abdominal segments. Gall formation by Lasiopterini and Asphondyliini and the role of associated fungi are discussed, as is the role of the fungus as an inquiline or an organizer of gall tissues and a nutritive device. [source]


Vegetation,environment relationships along El-Salam Canal, Egypt

ENVIRONMETRICS, Issue 3 2001
Mamdouh S. Serag
Abstract The bank and open water vegetation along El-Salam Canal in north-eastern Egypt were studied in relation to the prevailing environmental factors. The hypothesis that terresterial and aquatic species would show different downstream patterns of species richness was tested by sampling species composition and environmental variables along 80,km of the canal. Species richness was highest in the first 30,km of the canal. The downstream decrease in species richness exhibits interpretable downstream patterns. Total species richness increased with increasing organic matter in the soil and decreased with both increasing soil and water salinity along the gradient. The indicator species of TWINSPAN analysis are: Azolla filiculoides, Echinochloa stagnina, Eichhornia crassipes and Saccharum spontaneum (cluster I); Ceratophyllum demersum, Ludwigia stolonifera and Typha domingensis (cluster II); Potamogeton pectinatus and Phragmites australis (cluster III); Tamarix nilotica and Suaeda vera (cluster IV). The environmental factors influencing the vegetation clusters were analysed using canonical correspondence analysis ordination (CCA). The water salinity, total nitrogen and total phosphorus appeared to be the most important factors controlling the abundance of aquatic plant distribution along the canal. The shoreline vegetation is mainly controlled by salinity, K+ and organic carbon of the soil. Water analysis indicated that the salinity of the water increases southwards and the minimum salinity of the water (0.78,mS/cm) was recorded at the intake of the canal. The maximum value (7.5,mS/cm) of water salinity was recorded near the Suez Canal. Copyright © 2001 John Wiley & Sons, Ltd. [source]


Host plant development, water level and water parameters shape Phragmites australis -associated oomycete communities and determine reed pathogen dynamics in a large lake

FEMS MICROBIOLOGY ECOLOGY, Issue 2 2009
Anna Wielgoss
Abstract In a 3-year-study, we analysed the population dynamics of the reed pathogen Pythium phragmitis and other reed-associated oomycetes colonizing fresh and dried reed leaves in the littoral zone of a large lake. Oomycete communities derived from internal transcribed spacer clone libraries were clearly differentiated according to substrate and seasonal influences. In fresh leaves, diverse communities consisting of P. phragmitis and other reed-associated pathogens were generally dominant. Pythium phragmitis populations peaked in spring with the emergence of young reed shoots, and in autumn after extreme flooding events. In summer it decreased with falling water levels, changing water chemistry and rising temperatures. Another Pythium species was also highly abundant in fresh leaves throughout the year and might represent a new, as-yet uncultured reed pathogen. In dried leaves, reed pathogens were rarely detected, whereas saprophytic species occurred abundantly during all seasons. Saprophyte communities were less diverse, less temperature sensitive and independent of reed development. In general, our results provide evidence for the occurrence of highly specialized sets of reed-associated oomycetes in a natural reed ecosystem. Quantitative analyses (clone abundances and quantitative real-time PCR) revealed that the reed pathogen P. phragmitis is particularly affected by changing water levels, water chemistry and the stage of reed development. [source]


Palatability of macrophytes to the invasive freshwater snail Pomacea canaliculata: differential effects of multiple plant traits

FRESHWATER BIOLOGY, Issue 10 2010
PAK KI WONG
Summary 1.,By selective grazing, invasive grazers can alter macrophyte-herbivore relationships in shallow freshwater bodies. Evaluating the palatability of macrophytes and understanding the determinants of plant palatability can help predict grazing impact. In no-choice feeding assays, we tested the palatability of 21 species of freshwater macrophytes to the invasive freshwater apple snail Pomacea canaliculata. 2.,Daily feeding rate varied greatly with plant species, ranging from 1.1 to 22% of snail body mass. We assessed six plant properties and examined their correlation with feeding rate. Total nitrogen content was positively related, and C:N ratio and dry matter content (DMC) negatively related, to snail feeding rate. There was no significant correlation between snail feeding rate and plant phenolic content, but the feeding rate on Myriophyllum aquaticum (the plant with the highest phenolic content) was very low. 3.,We repeated the feeding assays for 15 species that were not palatable as fresh leaves with reconstituted plant tissues formed by mixing ground up dried leaves with agar. The feeding rate still differed greatly among macrophyte species. Phragmites australis and Vallisneria natans (two species with the highest DMC) were eaten much more as reconstituted plant than as fresh leaves, indicating that structure (i.e. DMC) may be important in their defence against snail herbivory. For two plants (M. aquaticum and Alternanthera philoxeroides) that had moderate amounts of nitrogen/phosphorus but were consumed very little as fresh and reconstituted tissues, we incorporated their extracts into a palatable agar-based food. The extracts from both species greatly reduced snail feeding rate, indicating the presence of chemical defences in these two species. 4.,These results indicated that feeding was affected by several plant traits. The snail favoured plants with a high nitrogen content and avoided plants with a high DMC. Only a few plants possessed chemical feeding deterrents that were effective against this snail. Given the invasive spread of P. canaliculata in Asia, ecologists and managers should consider plant palatability when selecting plants for use in wetland restoration and when predicting the impact of further invasion by this species. [source]


Methane efflux in relation to plant biomass and sediment characteristics in stands of three common emergent macrophytes in boreal mesoeutrophic lakes

GLOBAL CHANGE BIOLOGY, Issue 1 2005
Paula Kankaala
Abstract Methane efflux was studied in stands of three emergent macrophyte species (Equisetum fluviatile, Schoenoplectus lacustris and Phragmites australis) commonly found in the littoral zone of boreal lakes. In vegetation stands with relatively low methane (CH4) emissions (<0.3 mol m,2 (ice-free period),1), the seasonal variation of CH4 efflux was better correlated with the dynamics of plant growth than variation in sediment temperature. In dense and productive vegetation stands that released high amounts of CH4 (2.3,7.7 mol m,2 (ice-free period),1), the seasonal variation in CH4 efflux was correlated with sediment temperature, indicating that methanogens were more limited by temperature than substrate supply. The bottom type at the growth site of the emergent plants significantly influenced the ratio of CH4 efflux to aboveground biomass of plants (Eff : B). The lowest Eff : B ratio was found in E. fluviatile stands growing on sand bottom under experimental conditions and the highest in P. australis -dominated littoral areas accumulating detritus from external sources. The future changes expected in the hydrology of boreal lakes and rivers because of climatic warming may impact the growth conditions of aquatic macrophytes as well as decomposition and accumulation of detritus and, thus, CH4 effluxes from boreal lakes. [source]


Variability of Organic Matter Processing in a Mediterranean Coastal Lagoon

INTERNATIONAL REVIEW OF HYDROBIOLOGY, Issue 5-6 2004
Margarita Menéndez
Abstract The spatial variability of plant organic matter processing was studied experimentally in a shallow coastal lagoon (Tancada lagoon, average depth: 37 cm, area: 1.8 km2) in the Ebro River Delta (NE Spain). To determine the effect of hydrology and sediment characteristics on plant organic matter processing, leaves of Phragmites australis at the end of its vegetative cycle and whole plants of Ruppia cirrhosa(Petagna) Grande, just abscised, were enclosed in litter bags. Two different mesh sizes (100 ,m and 2 mm) were used to study the effect of macroinvertebrates on decomposition. The bags were placed in the water column and approximately 15 cm above the sediment at 6 different locations in the lagoon. The experiment was performed twice, in autumn-winter and spring-summer. The effect of macroinvertebrates on decomposition rate was not significant in Tancada lagoon. Breakdown rates showed spatial differences only in spring-summer. In the autumn-winter experiment, the effect of strong wind masked the effects of environmental variables and hydrology on decomposition rate. In the spring-summer experiment, characterised by high stability of the water column, dissolved inorganic nitrogen (DIN) concentration in the water column and organic matter in the sediment were the main factors determining the variability of organic matter processing. A positive relationship was calculated between P. australis decomposition rate and dissolved inorganic nitrogen in spring-summer (r2 = 0.92, p < 0.001). (© 2004 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim) [source]


Mechanisms of exclusion of native coastal marsh plants by an invasive grass

JOURNAL OF ECOLOGY, Issue 2 2006
TODD E. MINCHINTON
Summary 1Determining the mechanisms by which invasive species exclude natives is critical for conserving and restoring native populations in impacted habitats. In recent decades the grass Phragmites australis has been aggressively invading coastal marshes of North America, with monocultures often replacing diverse assemblages of plants. 2Our objective was to quantify how P. australis modifies the abiotic (soil and light conditions) and biotic (litter and shoots) environment and to determine the mechanisms by which it excludes two common forbs, the annual chenopod Atriplex patula var. hastata and the perennial aster Solidago sempervirens, from the highest tidal elevations of a brackish marsh in southern New England, USA. 3In a 3-year field experiment we added seeds of both forb species to stands of P. australis, where we manipulated shoots and litter in an orthogonal design, and to uninvaded marsh areas dominated by the rush Juncus gerardi, where we manipulated the shoots of the marsh vegetation. In general, seedling establishment and the number of plants surviving until the end of the growing season were substantially greater in areas not invaded by P. australis, and both shoots and litter limited the abundance of forbs within stands. 4Forbs surviving within stands of P. australis grew larger and produced more seeds than those in uninvaded areas, indicating that changes to the soil resulting from invasion do not preclude the survival of established forbs. This was confirmed by a glasshouse study where the performance of forbs in soil collected from within stands of P. australis was better than in soil from areas dominated by J. gerardi. 5Similar to many invasive grasses in terrestrial communities, P. australis excludes native forbs through competition, modifying the biotic environment of the marsh at both the ground (litter) and above-ground (shoots) levels. Our results suggest that successful invaders, such as P. australis, are likely to be the ones that can engineer habitats in multiple ways and limit populations of native species across several critical stages of their life history. [source]


Is succession in wet calcareous dune slacks affected by free sulfide?

JOURNAL OF VEGETATION SCIENCE, Issue 2 2003
Erwin B. Adema
van der Meijden (1996) for phanerogams; Schaminée et al. (1995) for syntaxa Abstract. Consequences of sulfide toxicity on succession in wet calcareous dune slacks were investigated. Sulfide may exert an inhibitory effect on dune slack plants, but several pioneer species exhibit ROL (Radial Oxygen Loss) and thereby protect themselves against free sulfide. Under oxic conditions free sulfide will be oxiginated to harmless sulfate. However, successive species when not capable of ROL may be sensitive to free sulfide and cannot invade the area. Therefore, the occurrence of free sulfide may have a stabilizing effect on the pioneer vegetation. Data on the vertical distribution of oxygen, redox and sulfide were collected in mesocosms with Littorella uniflora or Carex nigra, with and without microbial mats and compared to control mesocosms. Also, in situ data were collected in a dune slack on the Frisian Island of Texel. In the mesocosms, free sulfide was detected only at nighttime in C. nigra populated mesocosms and in unvegetated units, but not in L. uniflora vegetated mesocosms. In the field, sulfide and redox profiles showed distinct differences between the groundwater exfiltration and infiltration site of the dune slack. At the exfiltration site, sulfide was only occasionally found; in contrast, measurable amounts of free sulfide were regularly found at the infiltration site of the slack. Since Phragmites australis dominates in the infiltration site of the slack, the results suggest that free sulfide accelerate the succession, rather than slowing it down by the exclusion of some plant species. [source]


The response of Phragmites australis to harvesting pressure in the Muzi Swamp of the Tembe Elephant Park, South Africa

LAND DEGRADATION AND DEVELOPMENT, Issue 5 2004
J. A. Tarr
Abstract Phragmites australis (Cav.) Trin. ex Steud. has been harvested in the Muzi Swamp in Maputaland, South Africa for generations. Over the last ten years, however, a flourishing trade in this reed has developed. Concern has now been expressed that at the current levels of utilization the ecological integrity of the Muzi Swamp is being compromised, and that the current harvesting rates are not sustainable in the long term. The hypothesis was put forward that a degradation gradient exists with the most severe degradation occurring the closest to where community members enter the park, and the least degradation the furthest from this point. The results of this study, however, show no distinct degradation gradient. Yet the overall condition of the reeds in the harvesting area is poorer than in the non-utilized area. Expansion of the current harvesting area, coupled with adaptive harvesting systems and yearly monitoring will improve the quality of the reeds within the harvesting area without affecting the harvesting quotas. Copyright © 2004 John Wiley & Sons, Ltd. [source]


Microsatellite variation within and among North American lineages of Phragmites australis

MOLECULAR ECOLOGY, Issue 7 2003
K. Saltonstall
Abstract Over the past century, the spread of the common reed (Phragmites australis) has had a dramatic impact on wetland communities across North America. Although native populations of Phragmites persist, introduced invasive populations have dominated many sites and it is not clear if the two types can interbreed. This study compares patterns of differentiation in 10 microsatellite loci among North American and European Phragmites individuals with results obtained from sequencing of noncoding chloroplast DNA. Three population lineages (native, introduced and Gulf Coast) were previously identified in North America from chloroplast DNA and similar structuring was found in the nuclear genome. Each lineage was distinguished by unique alleles and allele combinations and the introduced lineage was closely related to its hypothesized source population in Europe. Size homoplasy and diagnostic base substitutions distinguishing lineages were evident at several loci, further emphasizing that native, introduced and Gulf Coast North American Phragmites lineages are genetically distinct. Gene flow between lineages was low and invasive introduced populations do not represent a hybrid population type. [source]


Impact of rising CO2 on emissions of volatile organic compounds: isoprene emission from Phragmites australis growing at elevated CO2 in a natural carbon dioxide spring,

PLANT CELL & ENVIRONMENT, Issue 4 2004
P. A. SCHOLEFIELD
ABSTRACT Isoprene basal emission (the emission of isoprene from leaves exposed to a light intensity of 1000 µmol m,2 s,1 and maintained at a temperature of 30 °C) was measured in Phragmites australis plants growing under elevated CO2 in the Bossoleto CO2 spring at Rapolano Terme, Italy, and under ambient CO2 at a nearby control site. Gas exchange and biochemical measurements were concurrently taken. Isoprene emission was lower in the plants growing at elevated CO2 than in those growing at ambient CO2. Isoprene emission and isoprene synthase activity (IsoS) were very low in plants growing at the bottom of the spring under very rich CO2 and increased at increasing distance from the spring (and decreasing CO2 concentration). Distance from the spring did not significantly affect photosynthesis making it therefore unlikely that there is carbon limitation to isoprene formation. The isoprene emission rate was very quickly reduced after rapid switches from elevated to ambient CO2 in the gas-exchange cuvette, whereas it increased when switching from ambient to elevated CO2. The rapidity of the response may be consistent with post-translational modifications of enzymes in the biosynthetic pathway of isoprene formation. Reduction of IsoS activity is interpreted as a long-term response. Basal emission of isoprene was not constant over the day but showed a diurnal course opposite to photosynthesis, with a peak during the hottest hours of the day, independent of stomatal conductance and probably dependent on external air temperature or temporary reduction of CO2 concentration. The present experiments show that basal emission rate of isoprene is likely to be reduced under future elevated CO2 levels and allow improvement in the modelling of future isoprene emission rates. [source]


Naturally low carbonic anhydrase activity in C4 and C3 plants limits discrimination against C18OO during photosynthesis

PLANT CELL & ENVIRONMENT, Issue 9 2000
J. S. Gillon
ABSTRACT The 18O content of CO2 is a powerful tracer of photosynthetic activity at the ecosystem and global scale. Due to oxygen exchange between CO2 and 18O-enriched leaf water and retrodiffusion of most of this CO2 back to the atmosphere, leaves effectively discriminate against 18O during photosynthesis. Discrimination against 18O (,18O) is expected to be lower in C4 plants because of low ci and hence low retrodiffusing CO2 flux. C4 plants also generally show lower levels of carbonic anhydrase (CA) activities than C3 plants. Low CA may limit the extent of 18O exchange and further reduce ,18O. We investigated CO2,H2O isotopic equilibrium in plants with naturally low CA activity, including two C4 (Zea mays, Sorghum bicolor) and one C3 (Phragmites australis) species. The results confirmed experimentally the occurrence of low ,18O in C4, as well as in some C3, plants. Variations in CA activity and in the extent of CO2,H2O isotopic equilibrium (,eq) estimated from on-line measurements of ,18O showed large range of 0,100% isotopic equilibrium (,eq= 0,1). This was consistent with direct estimates based on assays of CA activity and measurements of CO2 concentrations and residence times in the leaves. The results demonstrate the potential usefulness of ,18O as indicator of CA activity in vivo. Sensitivity tests indicated also that the impact of ,eq< 1 (incomplete isotopic equilibrium) on 18O of atmospheric CO2 can be similar for C3 and C4 plants and in both cases it increases with natural enrichment of 18O in leaf water. [source]


Salt Marsh Restoration in Connecticut: 20 Years of Science and Management

RESTORATION ECOLOGY, Issue 3 2002
R. Scott Warren
Abstract In 1980 the State of Connecticut began a tidal marsh restoration program targeting systems degraded by tidal restrictions and impoundments. Such marshes become dominated by common reed grass (Phragmites australis) and cattail (Typha angustifolia and T. latifolia), with little ecological connection to Long Island Sound. The management and scientific hypothesis was that returning tidal action, reconnecting marshes to Long Island Sound, would set these systems on a recovery trajectory. Specific restoration targets (i.e., pre-disturbance conditions or particular reference marshes) were considered unrealistic. However, it was expected that with time restored tides would return ecological functions and attributes characteristic of fully functioning tidal salt marshes. Here we report results of this program at nine separate sites within six marsh systems along 110 km of Long Island Sound shoreline, with restoration times of 5 to 21 years. Biotic parameters assessed include vegetation, macroinvertebrates, and use by fish and birds. Abiotic factors studied were soil salinity, elevation and tidal flooding, and soil water table depth. Sites fell into two categories of vegetation recovery: slow, ca. 0.5%, or fast, more than 5% of total area per year. Although total cover and frequency of salt marsh angiosperms was positively related to soil salinity, and reed grass stand parameters negatively so, fast versus slow recovery rates could not be attributed to salinity. Instead, rates appear to reflect differences in tidal flooding. Rapid recovery was characterized by lower elevations, greater hydroperiods, and higher soil water tables. Recovery of other biotic attributes and functions does not necessarily parallel those for vegetation. At the longest studied system (rapid vegetation recovery) the high marsh snail Melampus bidentatus took two decades to reach densities comparable with a nearby reference marsh, whereas the amphipod Orchestia grillus was well established on a slow-recovery marsh, reed grass dominated after 9 years. Typical fish species assemblages were found in restoration site creeks and ditches within 5 years. Gut contents of fish in ditches and on the high marsh suggest that use of restored marsh as foraging areas may require up to 15 years to reach equivalence with reference sites. Bird species that specialize in salt marshes require appropriate vegetation; on the oldest restoration site, breeding populations comparable with reference marshland had become established after 15 years. Use of restoration sites by birds considered marsh generalists was initially high and was still nearly twice that of reference areas even after 20 years. Herons, egrets, and migratory shorebirds used restoration areas extensively. These results support our prediction that returning tides will set degraded marshes on trajectories that can bring essentially full restoration of ecological functions. This can occur within two decades, although reduced tidal action can delay restoration of some functions. With this success, Connecticut's Department of Environmental Protection established a dedicated Wetland Restoration Unit. As of 1999 tides have been restored at 57 separate sites along the Connecticut coast. [source]


Life on the edge , to which degree does phreatic water sustain vegetation in the periphery of the Taklamakan Desert?

APPLIED VEGETATION SCIENCE, Issue 1 2010
Helge Bruelheide
Abstract Questions: Do the vegetation-specific patterns in the forelands of river oases of the Taklamakan Desert provide clues to the degree to which a vegetation type depends on unsaturated soil moisture, brought about by extensive floodings, or phreatic water? Location: Foreland of the Qira oasis on the southern rim of the Taklamakan Desert, Xinjiang Uygur Autonomous Region, China. Methods: A vegetation map was prepared using a SPOT satellite image and ground truthing. Measurements of soil water contents were obtained from a flooding experiment and transformed into water potentials. Sum excedance values were calculated as the percentage of days on which different thresholds of soil water potentials were transgressed. Groundwater depth was mapped by drilling 30 groundwater holes and extrapolating the distances to the whole study area. Results: The vegetation was characterized by only six dominant or codominant species: Alhagi sparsifolia, Karelinia caspia, Populus euphratica, Tamarix ramosissima, Calligonum caput-medusae and Phragmites australis. The vegetation patterns encountered lacked any linear features typical of phreatophytes, thus not allowing direct conclusions on the type of the sustaining water sources. Soil water potentials never transgressed a threshold of pF 5 (,10 MPa) in horizons above the capillary fringe during periods without inundation, thus representing water not accessible for plants. Depth to the groundwater ranged between 2.3 and 17.5 m among plots and varied between 1.7 and 8.0 m within a plot owing to dune relief. The seven main vegetation types showed distinct niches of groundwater depths, corresponding to the observed concentric arrangement of vegetation types around the oasis. Conclusions: Inundation by flooding and unsaturated soil moisture are irrelevant for the foreland vegetation water supply. Although distances to the groundwater table can reach about 20 m, which is exceptionally large for phreatophytes, groundwater is the only water source for all vegetation types in the oasis foreland. In consequence, successful maintenance of oasis foreland vegetation will crucially depend on providing non-declining ground water tables. [source]


Vegetation change in a man-made salt marsh affected by a reduction in both grazing and drainage

APPLIED VEGETATION SCIENCE, Issue 1 2002
Peter Esselink
Abstract. In order to restore natural salt marsh in a 460-ha nature reserve established in man-made salt marsh in the Dollard estuary, The Netherlands, the artificial drainage system was neglected and cattle grazing reduced. Vegetation changes were traced through two vegetation surveys and monitoring of permanent plots over 15 yr after the management had been changed. Exclosure experiments were started to distinguish grazing effects from effects of increased soil waterlogging caused by the neglect of the drainage system. Both vegetation surveys and permanent plots demonstrated a dichotomy in vegetation succession. The incidence of secondary pioneer vegetation dominated by Salicornia spp. and Suaeda maritima increased from 0 to 20%, whereas the late-successional (Phragmites australis) vegetation from 10 to 15%. Grazing intensity decreased towards the sea. The grazed area contracted landward, which allowed vegetation dominated by tall species to increase seaward. Grazing and increased waterlogging interacted in several ways. The impact of trampling increased, and in the intensively grazed parts soil salinity increased. This can probably be explained by low vegetation cover in spring. Framework Ordination, an indirect-gradient-analysis technique, was used to infer the importance of environmental factors in influencing changes in species composition. Many changes were positively or negatively correlated with soil aeration and soil salinity, whereas elevation was of minor importance. Grazing accounted for only a few changes in species frequency. Changes in permanent plots were greater during the first than during the second half of the study period. In exclosures that were installed halfway through the study period, there was a relatively rapid recovery of previously dominant species that had decreased during the first half of the study period. Species richness per unit area in the reserve increased. At the seaward side of the marsh, the altered management allowed succession to proceed leading to establishment of stands of Phragmites australis, whereas on the landward side, the combination of moderate grazing with neglect of the drainage system appeared an effective measure in maintaining habitats for a wider range of halophytic species. [source]


The characterization and classification of the Black River Upper Morass, Jamaica, using the three-parameter test of vegetation, soils and hydrology

AQUATIC CONSERVATION: MARINE AND FRESHWATER ECOSYSTEMS, Issue 1 2007
Shakira Azan
Abstract 1.The characterization and classification of the Black River Upper Morass was conducted using the criteria of the three-parameter test for vegetation, soils and hydrology at 14 sites within the study area. 2.The Upper Morass exhibited 71% hydrophytic vegetation typical of wetlands (vascular and non-vascular plants including Cladium jamaicense, Phragmites australis, Typha angustifolia and Sagittaria lancifolia) and 29% vegetation atypical of wetlands. 3.The Upper Morass is classified as a Palustrine System with sub-classes of Aquatic Bed and Persistent Emergent Wetland. 4.The presence throughout the Upper Morass of monoculture stands of the invasive species Eichhornia crassipes and Typha domingensis, which are known to invade disturbed or partially drained wetlands, confirmed that the study area was a disturbed ecosystem. 5.The Upper Morass exhibited hydric (flood-water and groundwater) soils, which, in association with its temporarily flooded and saturated wetland hydrology, indicated that it is groundwater-driven. 6.Application of the three-parameter test indicated a linkage between the functions of the Upper Morass and the Lower Morass, and thus a need for conservation of the Black River Morass System as a single unit rather than two independent wetlands. Two key instruments of conservation will be further detailed ecological assessments and the implementation of a management plan. Copyright © 2006 John Wiley & Sons, Ltd. [source]


The effect of a single burn event on the aquatic invertebrates in artesian springs

AUSTRAL ECOLOGY, Issue 8 2009
NICOLA THERESE MUNRO
Abstract Fire can often occur in aquatic ecosystems, which may affect aquatic invertebrates. Despite the importance of aquatic invertebrates to ecosystem function, the effect of fire on these environments has been little studied. We studied the effects of fire on aquatic invertebrates in artesian springs in the arid zone of South Australia. Artesian springs are a unique and threatened ecosystem, containing several rare and endemic species. Evidence suggests these wetlands were routinely burnt by indigenous Aboriginal people before European settlement over 100 years ago. Recently, burning has been suggested as a reinstated management tool to control the dominant reed Phragmites australis. A reduction in the cover of the reed may benefit the threatened flora and fauna through enhancement of water flow. Three artesian springs were burnt and aquatic invertebrates sampled from the burnt and three unburnt springs. A single fire in late winter completely burnt the dominant vegetation, followed by recovery of Phragmites over the following 2 years. A single fire event did not deplete populations of endemic aquatic invertebrates in artesian springs, but probably did not substantially benefit these populations either. Isopods, amphipods, ostracods and three species of hydrobiid snail survived the fire event, and most had increased in number 1 month post fire but then returned to pre-burnt numbers by 1 year post fire. Morphospecies richness of all identified invertebrates increased over time in all springs, but did not differ appreciably between burnt and unburnt springs. If burning artesian springs is to be adopted as a management tool to suppress the growth of Phragmites australis, we conclude that the endemic aquatic invertebrates will survive a single burn event, without negative effect to their populations. [source]