Phosphorescent Dyes (phosphorescent + dye)

Distribution by Scientific Domains


Selected Abstracts


Triplet Exciton and Polaron Dynamics in Phosphorescent Dye Blended Polymer Photovoltaic Devices

ADVANCED FUNCTIONAL MATERIALS, Issue 17 2010
Chang-Lyoul Lee
Abstract The triplet exciton and polaron dynamics in phosphorescent dye (PtOEP) blended polymer (MEH-PPV) photovoltaic devices are investigated by quasi-steady-state photo-induced absorption (PIA) spectroscopy. According to the low-temperature PIA and photoluminescence (PL) results, the increase in strength of the triplet-triplet (T1 - Tn) absorption of MEH-PPV in the blend system originates from the triplet-triplet energy transfer from PtOEP to MEH-PPV. The PtOEP blended MEH-PPV/C60 bilayer photovoltaic device shows a roughly 30%,40% enhancement in photocurrent and power-conversion efficiency compared to the device without PtOEP. However, in contrast to the bilayer device results, the bulk heterojunction photovoltaic devices do not show a noticeable change in photocurrent and power-conversion efficiency in the presence of PtOEP. The PIA intensity, originating from the polaron state, is only slightly higher (within the experimental error), indicating that carrier generation in the bulk heterojunction is not enhanced in the presence of PtOEP. The rate and probability of the exciton dissociation between PtOEP and PCBM is much faster and higher than that of the triplet-triplet energy transfer between PtOEP and MEH-PPV. [source]


Harvesting Excitons Via Two Parallel Channels for Efficient White Organic LEDs with Nearly 100% Internal Quantum Efficiency: Fabrication and Emission-Mechanism Analysis

ADVANCED FUNCTIONAL MATERIALS, Issue 1 2009
Qi Wang
Abstract By incorporating two phosphorescent dyes, namely, iridium(III)[bis(4,6-difluorophenyl)-pyridinato-N,C2,]picolinate (FIrpic) for blue emission and bis(2-(9,9-diethyl-9H -fluoren-2-yl)-1-phenyl-1H -benzoimidazol-N,C3)iridium(acetylacetonate) ((fbi)2Ir(acac)) for orange emission, into a single-energy well-like emissive layer, an extremely high-efficiency white organic light-emitting diode (WOLED) with excellent color stability is demonstrated. This device can achieve a peak forward-viewing power efficiency of 42.5,lm,W,1, corresponding to an external quantum efficiency (EQE) of 19.3% and a current efficiency of 52.8,cd,A,1. Systematic studies of the dopants, host and dopant-doped host films in terms of photophysical properties (including absorption, photoluminescence, and excitation spectra), transient photoluminescence, current density,voltage characteristics, and temperature-dependent electroluminescence spectra are subsequently performed, from which it is concluded that the emission natures of FIrpic and (fbi)2Ir(acac) are, respectively, host,guest energy transfer and a direct exciton formation process. These two parallel pathways serve to channel the overall excitons to both dopants, greatly reducing unfavorable energy losses. It is noteworthy that the introduction of the multifunctional orange dopant (fbi)2Ir(acac) (serving as either hole-trapping site or electron-transporting channel) is essential to this concept as it can make an improved charge balance and broaden the recombination zone. Based on this unique working model, detailed studies of the slight color-shift in this WOLED are performed. It is quantitatively proven that the competition between hole trapping on orange-dopant sites and undisturbed hole transport across the emissive layer is the actual reason. Furthermore, a calculation of the fraction of trapped holes on (fbi)2Ir(acac) sites with voltage shows that the hole-trapping effect of the orange dopant is decreased with increasing drive voltage, leading to a reduction of orange emission. [source]


Highly Efficient and Color-Stable Deep-Blue Organic Light-Emitting Diodes Based on a Solution-Processible Dendrimer

ADVANCED MATERIALS, Issue 47 2009
Lei Wang
A color-stable blue organic light-emitting diode is obtained utilizing a solution-processible fluorescent , -conjugated dendrimerG0 (see image), with a maximum luminance efficiency of 5.3,cd A,1. Efficient green, red, and white OLEDs are also demonstrated by doping G0 with phosphorescent dyes. Combining high device efficiency with solution processibility, G0 becomes one of the best blue-emitting materials for fabricating flat-panel displays and white-light lighting panels via solution processing. [source]