Phosphatidylinositol-specific Phospholipase C (phosphatidylinositol-specific + phospholipase_c)

Distribution by Scientific Domains


Selected Abstracts


Functional demonstration of surface carbonic anhydrase IV activity on rat astrocytes

GLIA, Issue 3 2006
Nataliya Svichar
Abstract Buffering of the brain extracellular fluid is catalyzed by carbonic anhydrase (CA) activity. Whereas the extracellular isoform CA XIV has been localized exclusively to neurons in the brain, and to glial cells in the retina, there has been uncertainty regarding the form or forms of CA on the surface of brain astrocytes. We addressed this issue using physiological methods on cultured and acutely dissociated rat astrocytes. Prior work showed that the intracellular lactate-induced acidification (LIA) of astrocytes is diminished by benzolamide, a poorly permeant, nonspecific CA inhibitor. We demonstrate that pretreatment of astrocytes with phosphatidylinositol-specific phospholipase C (PI-PLC) results in a similar inhibition of the mean LIA (by 66 ± 3%), suggesting that the glycosylphosphatidylinositol-anchored CA IV was responsible. Pretreatment of astrocytes with CA IV inhibitory antisera also markedly reduced the mean LIA in both cultured cortical (by 46 ± 4%) and acutely dissociated hippocampal astrocytes (by 54 ± 8%). Pre-immune sera had no effect. The inhibition produced by PIPLC or CA IV antisera was not significantly less than that by benzolamide, suggesting that the majority of detectable surface CA activity was attributable to CA IV. Thus, our data collectively document the presence of CAIV on the surface of brain astrocytes, and suggest that this is the predominant CA isoform on these cells. © 2005 Wiley-Liss, Inc. [source]


Listeria monocytogenes in spontaneous abortions in humans and its detection by multiplex PCR

JOURNAL OF APPLIED MICROBIOLOGY, Issue 5 2007
S. Kaur
Abstract Aim: To assess the extent of Listeria monocytogenes in causation of human spontaneous abortions by isolation methods and PCR analysis for the presence of virulence-associated genes. Methods and Results: A total of 305 samples comprising blood, urine, placental bits, faecal and vaginal swabs were collected from 61 patients with spontaneous abortions. Listeria spp. were isolated from 10 samples collected from nine (14·8%) patients. Confirmation of these isolates was based on biochemical tests, haemolysis on blood agar, CAMP test, phosphatidylinositol-specific phospholipase C (PI-PLC) assay followed by in vivo pathogenicity tests and multiplex PCR to detect virulence-associated genes (prfA, plcA, hlyA, actA and iap). Three isolates were confirmed as L. monocytogenes. Of these, two isolates turned out to be pathogenic and found to posses all five genes. However, the remaining two haemolytic L. monocytogenes isolates lacking the plcA gene and activity in the PI-PLC assay were found to be nonpathogenic by in vivo tests. Conclusions: The occurrence of pathogenic L. monocytogenes in cases of spontaneous abortions was 3·3%. It seems that the plcA gene and its expression have an important role as essential virulence determinants in pathogenic Listeria spp. Significance and Impact of the Study: The recovery of pathogenic L. monocytogenes isolates from cases of spontaneous abortion indicates the significance of listeric infection in pregnant women. [source]


GPI-anchored aminopeptidase is involved in the acrosome reaction in sperm of the mussel mytilusedulis

MOLECULAR REPRODUCTION & DEVELOPMENT, Issue 4 2004
Tatsuru Togo
Abstract The sperm of the mussel Mytilus had hydrolytic activities against substrates for aminopeptidase. Acrosome reaction (AR) was suppressed in the presence of aminopeptidase substrate, Phe-4-methylcoumaryl-7-amide (MCA), and an aminopeptidase inhibitor, bestatin. Treatment of sperm with phosphatidylinositol-specific phospholipase C (PI-PLC) released aminopeptidase activity from sperm and suppressed AR. These results suggest that the enzyme is located on the sperm surface via glycosylphosphatidylinositol (GPI)-anchor and is involved in the AR. Immunoblot analysis showed that tyrosine residues of 40, 59, 68, and 72 kDa proteins were phosphorylated during induction of the AR. The 40 kDa protein was also recognized by anti-c-Src antibody by immunoblotting. The tyrosine phosphorylation of these proteins was inhibited when sperm were inseminated in the presence of Phe-MCA, and by PI-PLC treatment. Treatment of sperm with tyrosine kinase activator, 9,10-dimethyl-1,2-benzanthracene, induced AR, and its inhibitor, genistein, suppressed AR. These results suggest that tyrosine phosphorylation of 40, 59, 68, and 72 kDa proteins, induced by the interaction of GPI-anchored aminopeptidase with oocyte surface, triggers AR in Mytilus sperm. Mol. Reprod. Dev. 67: 465,471, 2004. © 2004 Wiley-Liss, Inc. [source]


Role of Ca2+ mobilization and Ca2+ sensitization in 8-iso-PGF2, -induced contraction in airway smooth muscle

CLINICAL & EXPERIMENTAL ALLERGY, Issue 2 2009
A. Shiraki
Summary Background Isoprostanes are prostaglandin (PG)-like compounds synthesized by oxidative stress, not by cyclooxygenase, and increase in bronchoalveolar lavage fluid of patients with asthma. The airway inflammation implicated in this disease may be amplified by oxidants. Although isoprostanes are useful biomarkers for oxidative stress, the action of these agents on airways has not been fully elucidated. Objective This study was designed to determine the intracellular mechanisms underlying the effects of oxidative stress on airway smooth muscle, focused on Ca2+ signalling pathways involved in the effect of 8-iso-PGF2,. Methods Using simultaneous recording of isometric tension and F340/F380 (an indicator of intracellular concentrations of Ca2+, [Ca2+]i), we examined the correlation between tension and [Ca2+]i in response to 8-iso-PGF2, in the fura-2 loaded tracheal smooth muscle. Results Augmented tension and F340/F380 by 8-iso-PGF2, were attenuated by ICI-192605, an antagonist of thromboxane A2 receptors (TP receptors). Moreover, D609, an antagonist of phosphatidylcholine-specific phospholipase C, markedly reduced both the tension and F340/F380 induced by 8-iso-PGF2,, whereas U73122, an antagonist of phosphatidylinositol-specific phospholipase C, modestly inhibited them by 8-iso-PGF2,. SKF96365, a non-selective antagonist of Ca2+ channels, markedly reduced both tension and F340/F380 by 8-iso-PGF2,. However, diltiazem and verapamil, voltage-dependent Ca2+ channel inhibitors, modestly attenuated tension although their reduction of F340/F380 was not different from that by SKF96365. Y-27632, an inhibitor of Rho-kinase, significantly attenuated contraction induced by 8-iso-PGF2, without reducing F340/F380, whereas GF109203X and Go6983, protein kinase C inhibitors, did not markedly antagonize them although reducing F340/F380 with a potency similar to Y-27632. Conclusion 8-iso-PGF2, causes airway smooth muscle contraction via activation of TP receptors. Ca2+ mobilization by SKF96365- and D609-sensitive Ca2+ influx and Ca2+ sensitization by Rho-kinase contribute to the intracellular mechanisms underlying the action of 8-iso-PGF2,. Rho-kinase may be a therapeutic target for the physiologic abnormalities induced by oxidative stress in airways. [source]