Phosphate Scaffolds (phosphate + scaffold)

Distribution by Scientific Domains


Selected Abstracts


Development of a 95/5 poly(L -lactide- co -glycolide)/hydroxylapatite and ,-tricalcium phosphate scaffold as bone replacement material via selective laser sintering

JOURNAL OF BIOMEDICAL MATERIALS RESEARCH, Issue 1 2008
Rebecca Louise Simpson
Abstract 95/5 Poly(L -lactide- co -glycolide) was investigated for the role of a porous scaffold, using the selective laser sintering (SLS) fabrication process, with powder sizes of 50,125 and 125,250 ,m. SLS parameters of laser power, laser scan speed, and part bed temperature were altered and the degree of sintering was assessed by scanning electron microscope. Composites of the 125,250 ,-tricalcium phosphate (CAMCERAM® II) were sintered, and SLS settings using 40 wt % CAMCERAM® II were optimized for further tests. Polymer thermal degradation during processing led to a reduction in number and weight averaged molecular weight of 9% and 12%, respectively. Compression tests using the optimized composite sintering parameters gave a Young's modulus, yield strength, and strain at 1% strain offset of 0.13 ± 0.03 GPa, 12.06 ± 2.53 MPa, and 11.39 ± 2.60%, respectively. Porosity was found to be 46.5 ± 1.39%. CT data was used to create an SLS model of a human fourth middle phalanx and a block with designed porosity was fabricated to illustrate the process capabilities. The results have shown that this composite and fabrication method has potential in the fabrication of porous scaffolds for bone tissue engineering. © 2007 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 2008 [source]


Simultaneous Immobilization of Bioactives During 3D Powder Printing of Bioceramic Drug-Release Matrices

ADVANCED FUNCTIONAL MATERIALS, Issue 10 2010
Elke Vorndran
Abstract The combination of a degradable bioceramic scaffold and a drug-delivery system in a single low temperature fabrication step is attractive for the reconstruction of bone defects. The production of calcium phosphate scaffolds by a multijet 3D printing system enables localized deposition of biologically active drugs and proteins with a spatial resolution of approximately 300,µm. In addition, homogeneous or localized polymer incorporation during printing with HPMC or chitosan hydrochloride allows the drug release kinetics to be retarded from first to zero order over a period of 3,4 days with release rates in the range 0.68%,0.96%,h,1. The reduction in biological activity of vancomycin, heparin, and rhBMP-2 following spraying through the ink jet nozzles is between 1% and 18%. For vancomycin, a further loss of biological activity following incorporation into a cement and subsequent in vitro release is 11%. While previously acknowledged as theoretically feasible, is its shown for the first time that bone grafts with simultaneous geometry, localized organic bioactive loading, and localized diffusion control are a physical reality. This breakthrough offers a new future for patients by providing the required material function to match patient bone health status, site of repair, and age. [source]


Human tissue-engineered bone produced in clinically relevant amounts using a semi-automated perfusion bioreactor system: a preliminary study

JOURNAL OF TISSUE ENGINEERING AND REGENERATIVE MEDICINE, Issue 1 2010
F. W. Janssen
Abstract The aim of this study was to evaluate a semi-automated perfusion bioreactor system for the production of clinically relevant amounts of human tissue-engineered bone. Human bone marrow stromal cells (hBMSCs) of eight donors were dynamically seeded and proliferated in a perfusion bioreactor system in clinically relevant volumes (10 cm3) of macroporous biphasic calcium phosphate scaffolds (BCP particles, 2,6 mm). Cell load and distribution were shown using methylene blue staining. MTT staining was used to demonstrate viability of the present cells. After 20 days of cultivation, the particles were covered with a homogeneous layer of viable cells. Online oxygen measurements confirmed the proliferation of hBMSCs in the bioreactor. After 20 days of cultivation, the hybrid constructs became interconnected and a dense layer of extracellular matrix was present, as visualized by scanning electron microscopy (SEM). Furthermore, the hBMSCs showed differentiation towards the osteogenic lineage as was indicated by collagen type I production and alkaline phosphatase (ALP) expression. We observed no significant differences in osteogenic gene expression profiles between static and dynamic conditions like ALP, BMP2, Id1, Id2, Smad6, collagen type I, osteocalcin, osteonectin and S100A4. For the donors that showed bone formation, dynamically cultured hybrid constructs showed the same amount of bone as the statically cultured hybrid constructs. Based on these results, we conclude that a semi-automated perfusion bioreactor system is capable of producing clinically relevant and viable amounts of human tissue-engineered bone that exhibit bone-forming potential after implantation in nude mice. Copyright © 2009 John Wiley & Sons, Ltd. [source]


Osteogenic Induction of Adipose-derived Stromal Cells: Not a Requirement for Bone Formation In Vivo

ARTIFICIAL ORGANS, Issue 1 2010
Xiaoyu Li
Abstract Osteogenic induction was regarded as an indispensable step for adipose-derived stromal cells (ADSCs) to have osteogenic ability. Non-induced ADSCs can also produce bone in vivo and heal skeletal defects. The present study aimed to compare the bone-forming ability of osteogenically induced ADSCs and non-induced ADSCs in vivo. Tissue-engineered constructs were prepared from osteogenically induced or non-induced ADSCs and porous hydroxyapatite/beta-tricalcium phosphate scaffolds. A scaffold without cells and an empty defect group were used as control. All were implanted in rat critical calvarial defects. After implantation for 6 and 12 weeks, bone formation was analyzed using histomorphometry and microcomputed tomography; there were no significant differences in the formation of new bone between osteogenically induced ADSCs and non-induced ADSCs (P > 0.05). In conclusion, osteogenic induction of ADSCs is not an indispensable step for bone formation in vivo. Non-induced ADSCs can also be used as seeding cells to construct bone tissue. [source]


The use of porous calcium phosphate scaffolds with transforming growth factor beta 1 as an onlay bone graft substitute

CLINICAL ORAL IMPLANTS RESEARCH, Issue 6 2004
An experimental study in rats
Abstract Objectives: Autogeneous bone grafting is regarded to be the golden standard for onlay grafts, but it requires a harvesting procedure and the remodeling pattern over time is unpredictable. New materials are constantly being sought to overcome these problems. An in vivo experiment was carried out to evaluate whether (1) porous calcium phosphate cement is a suitable biomaterial for onlay bone grafting, and (2) the addition of transforming growth factor beta 1 (TGF-,1) accelerates de novo bone formation inside the cement porosity. Material and methods: A carrier of porous calcium phosphate cement (Calcibon®) was designed and 16 rats received one preshaped implant each. In 8 out of 16 implants 0.75 ,g TGF-,1 was applied. The animals were killed after 4 weeks and the characteristics of tissue ingrowth into the onlay graft were evaluated. Results: Histologic and quantitative histomorphometrical measurements demonstrated osteoid-like tissue formation in both experimental groups. The addition of TGF-,1 did not induce significantly more osteoid-like tissue formation. On the other hand, in TGF-,-loaded implants, a higher number of pores contained an inflammatory infiltrate. Conclusion: This study indicated that porous calcium phosphate cement is a promising material for clinical situations where bone formation has to be supported. Résumé La greffe osseuse autogčne est considérée comme la meilleure technique actuelle pour les greffons onlay mais elle requiert un processus de prélevement et le remodelage qui s'en suit est imprévisible. De nouveaux matériaux sont donc constamment recherchés. Cette étude in vitro a essayé d'évaluer si 1) le cément phosphate calcium poreux était un biomatériel favorable pour le greffage osseux onlay, 2) si l'addition de TGF-,1 accélérait la néoformation osseuse ŕ l'intérieur de la porosité du cément. Un porteur de cément phosphate calcium poreux (Calcibon®) a été fabriqué et seize rats ont reçu chacun un implant prédécoupé. Au niveau de huit des seize implants 0,75 ,g de TGF ,1 a été appliqué. Les animaux ont été euthanasiés aprčs quatre semaines et les caractéristiques de la croissance interne tissulaire dans le greffon onlay ont étéévaluées. Les mesures histologiques et histomorphométriques quantitatives ont démontré une formation tissulaire semblable ŕ l'ostéogénie dans les deux groupes expérimentaux. L'addition de TGF-ß1 n'induisait pas plus de formation tissulaire ressemblant ŕ celle d'ostéogénie. D'un autre côté, dans les implants chargés de TGF-,1, un nombre plus important de pores contenaient un infiltrat inflammatoire. Cette étude indique que le cément phosphate calcium poreux est un matériau prometteur pour les situations cliniques dans lesquelles la formation osseuse doit ętre améliorée. Zusammenfassung Ziel: Die Transplantation von autologem Knochen wird heute als Goldstandard für die Onlay-Transplantate betrachtet. Es braucht dazu aber einen zusätzlichen Eingriff für die Entnahme und eine Prognose bezüglich der anschliessenden Remodellationsvorgänge sind kaum möglich. Man sucht ständig nach neuen Produkten, um diese Probleme zu überwinden. Man führte eine in vivo Studie durch und untersucht, ob (1) ein poröser Kalziumphosphatzement ein brauchbares Biomaterial für ein Onlay-Transplantat ist, und (2) der Zusatz von TGF-,1 die Neubildung von Knochen in den Porositäten des Zementes positiv beeinflusst. Material und Methode: Man entwickelte einen Trägerzement aus porösem Kalziumphosphat (Calcibon®) und 16 Ratten erhielten je ein vorgeformtes Implantat eingesetzt. Bei 8 der 16 Implantate fügte man zusätzlich 0.75 ,g TGF-,1 dazu. Vier Wochen später opferte man die Tiere und konnte nun die Charakteristika des in die Implantate einwachsenden Gewebes untersuchen. Resultate: Die histologischen und quantitativen histomorphometrischen Messungen zeigten in beiden experimentellen Gruppen osteoidähnliche Gewebsbildungen. Der Zusatz von TGF-,1 bewirkte keine signifikante Zunahme dieser osteoidähnlichen Gewebsbildungen. Die mit TGF-,1 durchsetzten Implantate enthielten aber mehr mit entzündlichem Infiltrat angefüllte Poren. Zusammenfassung: Diese Arbeit zeigte uns, dass ein poröser Kalziumphosphatzement bei klinischen Situationen, wo die Knochenbildung unterstützt werden muss, ein erfolgsversprechendes Material ist. Resumen Objetivos: El injerto de hueso autógeno está considerado como el estándar de oro para injertos superpuestos, pero requiere un procedimiento de recolección y el patrón de remodelado a lo largo del tiempo es impredecible. Constantemente se están buscando materiales nuevos para superar estos problemas. Se llevó a cabo un experimento in vivo para evaluar si (1) el cemento de fosfato cálcico poroso es un biomaterial apropiado para injerto óseo superpuesto, y (2) la adición de TGF-,1 acelera la formación de hueso de novo dentro de la porosidad del cemento. Material y Métodos: Se diseńó un portador de cemento de fosfato cálcico (Calcibon®) y 16 ratas recibieron un implante preformado cada una. En 8 de 16 implantes se aplicaron 0.75 ,g de TGF-,1. Los animales se sacrificaron tras 4 semanas y se evaluaron las características del tejido crecido hacia adentro del injerto superpuesto. Resultados: Las mediciones histológicas e histomorfométricas cuantitativas demostraron formación de tejido tipo osteoide en ambos grupos experimentales. La adición de TGF-,1 no indujo significativamente más formación de tejido tipo osteoide. Por otro lado, en los implantes cargados con TGF-,1, un mayor número de de poros contenían infiltrado inflamatorio. Conclusión: Este estudio indica que el cemento de fosfato cálcico poroso es un material prometedor para situaciones clínicas donde la formación de hueso ha de ser favorecida. [source]