Home About us Contact | |||
Phosphate Homeostasis (phosphate + homeostasi)
Selected AbstractsRenal phosphate handling in human , what can we learn from hereditary hypophosphataemias?EUROPEAN JOURNAL OF CLINICAL INVESTIGATION, Issue 6 2010Stefan Amatschek Eur J Clin Invest 2010; 40 (6): 552,560 Abstract Background, Renal reabsorption of inorganic phosphate is critical for the maintenance of phosphate homeostasis. The sodium dependent phosphate cotransporters NaPi-IIa and NaPi-IIc have been identified to fulfill this task at the brush border membrane of proximal tubule cells. Various factors including dietary phosphate intake, parathyroid hormone, or the so called phosphatonins such as FGF23 have been shown to regulate activity of these transporters. Design, This review seeks to give an update on our current knowledge about regulatory mechanisms involved in human renal phosphate reabsorption. Results, Recently, an increasing number of genes have been identified that are directly associated with inherited phosphate wasting disorders (Klotho, PHEX, DMP1 and NHERF1). Several of these genes are predominantly expressed by osteocytes and osteoclasts in the bone suggesting indispensable signalling pathways between kidneys and the skeleton. Conclusion, In this review, the affected gene products in these inherited hypophosphataemias and their contribution to phosphate homeostasis are discussed. [source] Regulation of C-Terminal and Intact FGF-23 by Dietary Phosphate in Men and Women,JOURNAL OF BONE AND MINERAL RESEARCH, Issue 8 2006Sherri-Ann M Burnett MD Abstract FGF-23 is a novel regulator of phosphate metabolism. We studied the regulation of FGF-23 by dietary phosphate in 66 men and women using two assays. Dietary phosphate restriction decreased FGF-23 and loading increased FGF-23 significantly. An assay that measured intact FGF-23 showed the effects of dietary phosphate much more clearly than an assay that also measures presumed biologically inactive fragments. Dietary phosphate is a key regulator of circulating FGF-23; choice of assay is critical when studying FGF-23 physiology. Introduction: Fibroblast growth factor 23 (FGF-23) is a novel phosphaturic factor discovered through genetic studies of patients with renal phosphate wasting disorders. Ablation of the FGF-23 gene in mice reduces renal phosphate excretion and increases serum phosphate, suggesting that FGF-23 is critical for normal phosphate homeostasis. We examined the role of dietary phosphate in the regulation of FGF-23 in humans. Materials and Methods: Sixty-six healthy males and females were randomized to either phosphate-depleted or -loaded diets for 5 days, after a 4-day run-in diet. FGF-23 was measured using an "intact" assay that only detects intact FGF-23 peptide and with a "C-terminal" assay that measures both intact FGF-23 peptide and presumed biologically inactive carboxyl terminal fragments. The main outcome was the within group change in FGF-23 with either phosphate depletion or loading. Results: Using the intact FGF-23 assay, mean FGF-23 area under the curve (AUC) decreased by 9 ± 16% with phosphate depletion (p = 0.0041) and increased by 35 ± 29% with loading (p < 0.0001). Using the C-terminal FGF-23 assay, mean FGF-23 AUC decreased by 8 ± 12% with phosphate depletion (p = 0.0003) and increased by 13 ± 20% with loading (p = 0.0016). Increases in FGF-23 with phosphate loading were greater with the intact assay than with the C-terminal assay (p = 0.0003). Using the intact assay only, FGF-23 was significantly associated with serum phosphate (r = 0.39, p < 0.01), 24-h urinary phosphate (r = 0.47, p < 0.01), fractional excretion of phosphate (r = 0.29, p < 0.01), and 1,25-dihydroxyvitamin D (r = ,0.30, p < 0.01). The association between the assays was weak (r = 0.26, p < 0.01). Conclusions: Dietary phosphate is a key regulator of circulating FGF-23 levels in humans. Additionally, choice of assay is critical when performing physiologic investigations of FGF-23. [source] Hereditary hypophosphatemias: New genes in the bone,kidney axis (Review Article)NEPHROLOGY, Issue 4 2007ARMANDO L NEGRI SUMMARY: Hypophosphatemia due to isolated renal phosphate wasting is a genetically heterogeneous disease. Two new genes linked to two different forms of hereditary hypophosphatemias have recently been described. Autosomal recessive form of hypophosphatemic rickets was mapped to chromosome 4q21 and identified homozygous mutations in dentin matrix protein 1 (DMP1) gene, which encodes a non-collagenous bone matrix protein. Intact plasma levels of the phosphaturic protein FGF23 (fibroblast growth factor 23) were clearly elevated in some of the affected individuals, providing a possible explanation for the phosphaturia and inappropriately normal 1,25(OH)2D levels, and suggesting that DMP1 may regulate FGF23 expression. Hereditary hypophosphatemic rickets with hypercalciuria is another rare disorder of autosomal recessive inheritance. Affected individuals present with hypercalciuria due to increased serum 1,25-dihydroxyvitamin D levels and increased intestinal calcium absorption. The disease was mapped to a 1.6 Mbp region on chromosome 9q34, which contains SLC34A3, the gene encoding the renal sodium-phosphate cotransporter NaPi-IIc. This was the first demonstration that NaPi-IIc has a key role in the regulation of phosphate homeostasis. Thus, DMP1 and NaPi-IIc add two new members to the bone,kidney axis proposed since it was discovered that the first phosphatonin, FGF23, was of osteoblastic/osteocyte origin. This provides a mechanism for the skeleton to communicate with the kidney to coordinate the mineralization of extracelular matrix and the renal handling of phosphate. [source] Effects of calcitriol on the immune system: new possibilities in the treatment of glomerulonephritisCLINICAL AND EXPERIMENTAL PHARMACOLOGY AND PHYSIOLOGY, Issue 11 2003Vincenzo Panichi Summary 1.,1,25-Dihydroxyvitamin D3 (1,25(OH)2D3), the hormonal form of vitamin D, is widely appreciated to play a central role in calcium and phosphate homeostasis. However, it is becoming increasingly clear that the sterol also play an important role in the regulation of cellular growth, haematopoietic tissues and the immune system, as well as in the modulation of hormone secretion by several endocrine glands. 2.,In the present review, some of the mechanisms by which 1,25(OH)2D3 regulates immune function are highlighted. Moreover, a number of studies on the effects of calcitriol in several experimental animal models of renal disease are reported, suggesting new possibilities in the therapy of glomerulonephritis. [source] |