Pheromone Gland (pheromone + gland)

Distribution by Scientific Domains


Selected Abstracts


Spatial distribution and differential expression of the PBAN receptor in tissues of adult Helicoverpa spp. (Lepidoptera: Noctuidae)

INSECT MOLECULAR BIOLOGY, Issue 3 2007
A. Rafaeli
Abstract Pheromone-biosynthesis-activating neuropeptide (PBAN) regulates sex pheromone production in many female moths. PBAN-like peptides, with common FXPRLamide C-terminals are found in other insect groups where they have other functions. The ubiquity and multifunctional nature of the pyrokinin/PBAN family of peptides suggests that the PBAN receptor proteins could also be present in a variety of insect tissues with alternative functions from that of sex pheromone biosynthesis. Previously we showed the presence of the PBAN-R in Helicoverpa armigera at the protein level. In the present study we confirm the similarities between the two Helicoverpa species: armigera and zea by (1) demonstrating the presence of the receptor protein in Sf9 cells, cloned to express the HezPBAN receptor, as compared with the endogenous receptor protein, previously shown in H. armigera pheromone glands, and (2) by identifying the nucleotide sequence of the PBAN-R from mRNA of H. armigera pheromone glands. Sequences of the two Helicoverpa spp. are 98% identical with most changes taking place in the 3,-end. We demonstrate the spatial distribution of the PBAN receptor protein in membranes of H. armigera brain (Br), thoracic ganglion (TG) and ventral nerve cord (VNC). We also demonstrate the presence and differential expression of the PBAN receptor gene (using reverse transcription,polymerase chain reaction and reverse transcription,quantitative real-time polymerase chain reaction, respectively) in the neural tissues (Br, TG and VNC) of adult H. armigera female moths as compared with its presence in pheromone glands. Surprisingly, the gene for the PBAN receptor is also detected in the male tissue homologous to the female pheromone gland, the aedeagus, although the protein is undetectable and PBAN does not induce physiological (pheromone production) or cellular (cyclic-adenosine monophosphate production) responses in this tissue. Our findings indicate that PBAN or PBAN-like receptors are present in the neural tissues and may represent a neurotransmitter-like function for PBAN-like peptides. In addition, the surprising discovery of the presence of the gene encoding the PBAN receptor in the male homologous tissue, but its absence at the protein level, launches opportunities for studying molecular regulation pathways and the evolution of these G protein coupled receptors (GPCRs). [source]


Expression of pheromone biosynthesis activating neuropeptide and its receptor (PBANR) mRNA in adult female Spodoptera exigua (Lepidoptera: Noctuidae)

ARCHIVES OF INSECT BIOCHEMISTRY AND PHYSIOLOGY (ELECTRONIC), Issue 1 2010
Yunxia Cheng
Abstract The full-length cDNA of pheromone biosynthesis activating neuropeptide receptor (PBANR) was cloned from the beet armyworm, Spodoptera exigua (Hübner) (Lepidoptera: Noctuidae); it included an open reading frame of 1,053,bp encoding 350 amino acids. The PBANR of S. exigua (SePBANR) was structurally characteristic of G protein,coupled receptor and its amino acid sequence shared 98% identity with the PBANR of Spodoptera littoralis. Both pheromone biosynthesis activating neuropeptide (PBAN) and PBANR mRNA abundance were measured in the brain-subesophageal ganglion complex, pheromone gland, ventral nerve cord, and ovary of S. exigua female moths by real-time RT-PCR. The abundance of PBAN mRNA in brain-subesophageal ganglion complex and PBANR mRNA in pheromone gland was significantly greater compared to other tissues, suggesting that the ligand-receptor relationship of PBAN and PBANR exists quantitatively in S. exigua. Both PBAN and PBANR expression displayed a remarkable diurnal rhythm, for they were low and stable during the photophase (07:00,21:00) and increased markedly during the scotophase (with a maximum abundance at 23:30) in 3-day-old female moths. The abundance of PBAN and PBANR increased steadily from the 1st day to the 5th day of the adult female life. The pattern of both diurnal and daily expression of PBAN and PBANR mRNA were coincident with enhanced capacity of sex pheromone release and mating of S. exigua moths during the same period. We infer from these results that pheromone biosynthesis and release in S. exigua is regulated by PBAN via up-regulating synthesis. © 2010 Wiley Periodicals, Inc. [source]


Evidence for two-step regulation of pheromone biosynthesis by the pheromone biosynthesis-activating neuropeptide in the moth Heliothis virescens,

ARCHIVES OF INSECT BIOCHEMISTRY AND PHYSIOLOGY (ELECTRONIC), Issue 3 2007
H. Eltahlawy
Abstract The control of pheromone biosynthesis by the neuropeptide PBAN was investigated in the moth Heliothis virescens. When decapitated females were injected with [2- 14C] acetate, females co-injected with PBAN produced significantly greater quantities of radiolabeled fatty acids in their pheromone gland than females co-injected with saline. This indicates that PBAN controls an enzyme involved in the synthesis of fatty acids, probably acetyl CoA carboxylase. Decapitated females injected with PBAN showed a rapid increase in native pheromone, and a slower increase in the pheromone precursor, (Z)-11-hexadecenoate. Total native palmitate and stearate (both pheromone intermediates) showed a significant decrease after PBAN injection, before their titers were later restored to initial levels. In contrast, the acyl-CoA thioesters of these two saturated fatty acids increased during the period when their total titers decreased. When a mixture of labeled palmitic and heptadecanoic (an acid that cannot be converted to pheromone) acids was applied to the gland, PBAN-injected females produced greater quantities of labeled pheromone and precursor than did saline-injected ones. The two acids showed similar time-course patterns, with no difference in total titers of each of the respective acids between saline- and PBAN-injected females. When labeled heptadecanoic acid was applied to the gland alone, there was no difference in titers of either total heptadecanoate or of heptadecanoyl-CoA between PBAN- and saline-injected females, suggesting that PBAN does not directly control the storage or liberation of fatty acids in the gland, at least for this fatty acid. Overall, these data indicate that PBAN also controls a later step involved in pheromone biosynthesis, perhaps the reduction of acyl-CoA moieties. The control by PBAN of two enzymes, near the beginning and end of the pheromone biosynthetic process, would seem to allow for more efficient utilization of fatty acids and pheromone than control of only one enzyme. Arch. Insect Biochem. Physiol. 64:120,130, 2007. Published 2007 Wiley-Liss, Inc. [source]


Lipid analysis of the sex pheromone gland of the moth Heliothis virescens

ARCHIVES OF INSECT BIOCHEMISTRY AND PHYSIOLOGY (ELECTRONIC), Issue 2 2005
S.P. Foster
Abstract The sex pheromone gland of female Heliothis virescens was analyzed for fatty acid and lipid content. Base methanolysis of the gland showed a large amount of methyl (Z)-11-hexadecenoate (Z11-16:Acyl), the fatty acyl analog of the major pheromone component, (Z)-11-hexadecenal, as well as a small amount of methyl (Z)-11-octadecenoate. Methyl esters of various common fatty acids were also observed. HPTLC analysis of the glandular lipids revealed large quantities of triacylglycerols (TGs), and lesser amounts of 1,2-diacylglycerols (1,2-DGs), 2- monoacylglycerols (2-MGs), phosphatidyl ethanolamines, and phosphatidyl cholines. The greatest amount of Z11-16:Acyl in these lipids was in the TGs, with lesser amounts in the two phospholipid classes and only trace amounts in the other neutral lipids. The glands of females at various ages and photoperiodic times were extracted, fractionated into neutral and polar fractions by silica SPE, and fatty acid titers in these fractions determined. All fatty acids, but notably Z11-16:Acyl, showed significant total and neutral lipid fraction peaks at mid scotophase for 2-day-old females; a less dramatic, but significant, Z11-16:Acyl peak in the polar fraction was also observed. However, only a relatively small proportion (<50%) of this acid was recovered from the silica at all times. This "non-recoverable" Z11-16:Acyl showed a dramatic and significant peak at mid scotophase for 2-day females, corresponding roughly with maximal pheromone titer. All other acids in the gland were recovered in high proportions, and their respective "non-recoverable" titers were not different at any of the times analyzed. Based on previous work, this non-recoverable Z11-16:Acyl is likely the CoA ester. Therefore, it appears that the pheromone gland of H. virescens maintains pools of Z11-16:Acyl in both CoA ester and TG forms, which are available for biosynthesis of pheromone. These pools are greatest during maximal pheromone production when the biosynthetic enzymes, possibly the fatty acid reductase, are unable to utilize rapidly enough the quantities of Z11-16:Acyl biosynthesized. Arch. Insect Biochem. Physiol. 59:80,90, 2005. © 2005 Wiley-Liss, Inc. [source]


Gq,-linked phospholipase C,1 and phospholipase C, are essential components of the pheromone biosynthesis activating neuropeptide (PBAN) signal transduction cascade

INSECT MOLECULAR BIOLOGY, Issue 4 2010
J. J. Hull
Abstract Sex pheromone production for most moths is regulated by pheromone biosynthesis activating neuropeptide (PBAN). In Bombyx mori, PBAN binding triggers the opening of store-operated Ca2+ channels, suggesting the involvement of a receptor-activated phospholipase C (PLC). In this study, we found that PLC inhibitors U73122 and compound 48/80 reduced sex pheromone production and that intracellular levels of 3H-inositol phosphate species increased following PBAN stimulation. In addition, we amplified cDNAs from pheromone glands corresponding to PLC,1, PLC,4, PLC, and two G protein , subunits, Go and Gq. In vivo RNA interference-mediated knockdown analyses revealed that BmPLC,1, BmGq1, and unexpectedly, BmPLC,, are part of the PBAN signal transduction cascade. [source]


Spatial distribution and differential expression of the PBAN receptor in tissues of adult Helicoverpa spp. (Lepidoptera: Noctuidae)

INSECT MOLECULAR BIOLOGY, Issue 3 2007
A. Rafaeli
Abstract Pheromone-biosynthesis-activating neuropeptide (PBAN) regulates sex pheromone production in many female moths. PBAN-like peptides, with common FXPRLamide C-terminals are found in other insect groups where they have other functions. The ubiquity and multifunctional nature of the pyrokinin/PBAN family of peptides suggests that the PBAN receptor proteins could also be present in a variety of insect tissues with alternative functions from that of sex pheromone biosynthesis. Previously we showed the presence of the PBAN-R in Helicoverpa armigera at the protein level. In the present study we confirm the similarities between the two Helicoverpa species: armigera and zea by (1) demonstrating the presence of the receptor protein in Sf9 cells, cloned to express the HezPBAN receptor, as compared with the endogenous receptor protein, previously shown in H. armigera pheromone glands, and (2) by identifying the nucleotide sequence of the PBAN-R from mRNA of H. armigera pheromone glands. Sequences of the two Helicoverpa spp. are 98% identical with most changes taking place in the 3,-end. We demonstrate the spatial distribution of the PBAN receptor protein in membranes of H. armigera brain (Br), thoracic ganglion (TG) and ventral nerve cord (VNC). We also demonstrate the presence and differential expression of the PBAN receptor gene (using reverse transcription,polymerase chain reaction and reverse transcription,quantitative real-time polymerase chain reaction, respectively) in the neural tissues (Br, TG and VNC) of adult H. armigera female moths as compared with its presence in pheromone glands. Surprisingly, the gene for the PBAN receptor is also detected in the male tissue homologous to the female pheromone gland, the aedeagus, although the protein is undetectable and PBAN does not induce physiological (pheromone production) or cellular (cyclic-adenosine monophosphate production) responses in this tissue. Our findings indicate that PBAN or PBAN-like receptors are present in the neural tissues and may represent a neurotransmitter-like function for PBAN-like peptides. In addition, the surprising discovery of the presence of the gene encoding the PBAN receptor in the male homologous tissue, but its absence at the protein level, launches opportunities for studying molecular regulation pathways and the evolution of these G protein coupled receptors (GPCRs). [source]


(11Z)-hexadec-11-enal enhances the attractiveness of Diatraea saccharalis main pheromone component in wind tunnel experiments

JOURNAL OF APPLIED ENTOMOLOGY, Issue 2 2005
B. Kalinová
Abstract:, GC-EAD and GC-MS analysis of pheromone gland extracts of sugarcane borer, Diatraea saccharalis, revealed two antennally active compounds, (9Z,11E)-hexadeca-9,1-dienal and (11Z)-hexadec-11-enal, in approximately 10 : 1 ratio. Various doses of identified compounds were investigated in wind tunnel experiments individually and in a 10 : 1 ratio. At all tested doses (9Z,11E)-hexadeca-9,1-dienal alone elicited upwind orientation and source location only in a minority of tested males. An admixture of (11Z)-hex-11-enal enhanced the attractiveness of (9Z,11E)-hexadeca-9,11-dienal significantly. This two-component blend (100 pg) was as attractive as natural pheromone extracted from three female pheromone glands. The data suggest that (11Z)-hexadec-11-enal is a part of the D. saccharalis sex pheromone. [source]


Sex pheromone of apple fruit moth Argyresthia conjugella (Lepidoptera: Argyresthiidae)

AGRICULTURAL AND FOREST ENTOMOLOGY, Issue 3 2002
Gunnhild Jaastad
Abstract 1,The apple fruit moth Argyresthia conjugella Zell. (Lepidoptera: Argyresthiidae) is the most important pest of apple in Scandinavia. It invades apple orchards and can destroy an entire crop during years of poor flowering and fruitsetting of its principal host, mountain ash Sorbus aucuparia. We investigated the female sex pheromone of apple fruit moth in order to develop a reliable lure, which can be used to detect migration of apple fruit moth into orchards and thus to avoid preventive insecticide sprays. 2,Pheromonal compounds obtained by solvent extraction of excised A. conjugella female pheromone glands were identified by coupled gas chromatography/electroantennography and gas chromatography/mass spectrometry. Two compounds (Z)-11-hexadecenyl acetate, and the analogous alcohol (Z)-11-hexadecen-1-ol, elicited a strong response from male antennae. (Z)-11-hexadecenyl acetate was highly attractive in field trapping tests, whereas as little as a 1%-addition of (Z)-11-hexadecen-1-ol strongly reduced male attraction. 3,(Z)-13-octadecenyl acetate, a previously reported sex attractant, had no effect on A. conjugella male attraction. [source]