Phenanthroline Complexes (phenanthroline + complex)

Distribution by Scientific Domains


Selected Abstracts


Synthesis of Indoles by Intermolecular Cyclization of Unfunctionalized Nitroarenes and Alkynes, Catalyzed by Palladium,Phenanthroline Complexes.

CHEMINFORM, Issue 40 2006
Fabio Ragaini
Abstract ChemInform is a weekly Abstracting Service, delivering concise information at a glance that was extracted from about 200 leading journals. To access a ChemInform Abstract, please click on HTML or PDF. [source]


Catalytic Hydrogenation of Halosteroidal Derivatives by Bipyridine or Phenanthroline Complexes of Copper(II) in Hydrazine Aqueous Media.

CHEMINFORM, Issue 34 2006
Huang-Chi Du
Abstract ChemInform is a weekly Abstracting Service, delivering concise information at a glance that was extracted from about 200 leading journals. To access a ChemInform Abstract, please click on HTML or PDF. [source]


ChemInform Abstract: Cycloisomerization of Functionalized 1,5- and 1,6-Dienes Catalyzed by Cationic Palladium Phenanthroline Complexes.

CHEMINFORM, Issue 24 2001
Philip Kisanga
Abstract ChemInform is a weekly Abstracting Service, delivering concise information at a glance that was extracted from about 100 leading journals. To access a ChemInform Abstract of an article which was published elsewhere, please select a "Full Text" option. The original article is trackable via the "References" option. [source]


Preparation and thermal decomposition reaction kinetics of a dysprosium(III) p -chlorobenzoate 1,10-phenanthroline complex

INTERNATIONAL JOURNAL OF CHEMICAL KINETICS, Issue 2 2008
Jian Jun Zhang
The title complex [Dy(p -ClBA)3Phen]2·2H2O was synthesized, where p -ClBA is p -chlorobenzoate and Phen is 1,10-phenanthroline. The complex was characterized by various techniques including elemental analysis, IR, XRD, and molar conductance. The thermal decomposition of the complex was studied under the nonisothermal condition by TG-DTG and IR techniques. The kinetic parameters of dehydration process were obtained from the analysis of DSC curves of the complex by the NL-DIF and Popescu methods, respectively. © 2007 Wiley Periodicals, Inc. 40: 66,72, 2008 [source]


Multifunctional Mesostructured Silica Microspheres from an Ultrasonic Aerosol Spray,

ADVANCED FUNCTIONAL MATERIALS, Issue 19 2008
Li Li
Abstract Multifunctional mesostructured silica microspheres are prepared using ultrasonic aerosol spray in conjunction with solvent evaporation-induced assembly. Rare earth ion,phenanthroline complexes, magnetite particles, photoacid generators, and pH-sensitive dyes are chosen as luminescent, magnetic, and photosensitive components. The incorporation of these functional components into mesostructured silica microspheres can be readily realized by dispersing them in the precursor solution of the aerosol spray process. Luminescent microspheres that can emit at multiple wavelengths when excited at a single wavelength are produced by the addition of multiple rare earth complexes into the precursor solution. The addition of magnetite particles leads to the production of magnetic luminescent microspheres. Photoacid generators and pH-sensitive dyes are further employed to produce magnetic photosensitive microspheres that can release acid and change color upon UV light illumination. Such multifunctional microspheres could have exciting potential for many optical and biotechnological applications, such as multiplexed labeling, diagnosis, simultaneous imaging and therapy, cell capture and separation, targeted delivery, and optical data storage. [source]


Bis(4,7-dimethyl and 5-dinitro-1,10-phenanthroline) sulfato-oxovanadium(IV)-mediated in vivo male germ cell apoptosis

JOURNAL OF APPLIED TOXICOLOGY, Issue 4 2001
Osmond J. D'Cruz
Abstract Oxovanadium(IV) [VO] complexes of 1,10-phenanthroline are a new class of potent apoptosis-inducing cytotoxic agents against human testicular cancer cells in vitro. The present study investigated the in vivo ability of four(bis)-chelated 1,10-phenanthroline [phen] complexes of sulfato-oxovanadium(IV),VO(phen)2, VO(Cl,phen)2, VO(Me2,phen)2 and VO(NO2,phen)2,with and without substitutions, to induce testicular germ cell apoptosis. Male germ cell loss in mice was measured by determining the epididymal sperm count, testicular weight and histological evaluation of the testes. Repetitive intratesticular injection (7.5 mg kg,1 testis,1) of bis-chelated 1,10-phenanthroline complexes of oxovanadium(IV) with 4,7-dimethyl [VO(Me2,phen)2] and 5-dinitro [VO(NO2,phen)2] substitution led to decreased sperm counts and reduced testicular weights. Histopathological examination of testicular sections from VO(Me2,phen)2 - and VO(NO2,phen)2 -treated mice revealed a marked inhibition of spermatogenesis and preferential loss of maturing, as well as elongated spermatids. In situ evaluation of seminiferous tubule cross-sections by terminal deoxynucleotidyl transferase-mediated FITC-deoxyuridine triphosphate nick end-labeling (TUNEL) and laser scanning confocal microscopy showed characteristic apoptotic germ cells delineating the periphery of the seminiferous tubules. The ability of bis-chelated 4,7-dimethyl- and 5-dinitro-substituted 1,10-phenanthroline complexes of oxovanadium(IV) to induce germ cell apoptosis in vivo may have potential utility in the treatment of human testicular germ cell tumors. Copyright © 2001 John Wiley & Sons, Ltd. [source]