Home About us Contact | |||
Petroleum Exploration (petroleum + exploration)
Selected AbstractsPETROLEUM SEEPAGES AT ASUK, DISKO, WEST GREENLAND: IMPLICATIONS FOR REGIONAL PETROLEUM EXPLORATIONJOURNAL OF PETROLEUM GEOLOGY, Issue 3 2007J. A. Bojesen-Koefoed Organic geochemical screening and biological marker analysis was carried out on a total of 45 Albian-Cenomanian sandstone and mudstone samples collected from a landslide block on thenorth coast of Disko island, central West Greenland. The landslide block covers an area of severalsquare kilometres, and originated approximately 400 m up-section from where it moved to itspresent position after the last glaciation. The mudstones are generally rich in organic carbon butshow no potential for petroleum generation. However, biodegraded oil stains were found in thepoorly lithified sandstones. Staining by undegraded or only slightly degraded oil in volcanic rocks iscommon in this region, but the occurrence described here is the only known outcrop where staining occurs in siliciclastic sediments, and also the only one known in which the oil is severely biodegraded. The oil stains appear to represent a biodegraded variety of the Cretaceous marine shale derived Itilli oil type which is known from many locations in the Disko-Nussusaq-Svartenhuk Halvø region. The oils entered the sandstones before the landslide event, probably during or beforethe extrusion of the volcanic succession in the Paleogene. This is the first time that a petroleum seepage has been found to the east of the Kuugannguaq-Qunnillik fault zone, which is located approximately 30 km west of Asuk. The presence of stainingby marine oil at Asuk demonstrates that marine petroleum source rocks were deposited muchfurther eastwards than was previously thought, thus expanding the area of potential explorationsignificantly. The presence of marine source rocks to the east of the Kuugannguaq-Qunnillik faultzone may explain the frequent observation of Direct Hydrocarbon Indicators in seismic datacollected in the Vaigat Sound. [source] Source Rocks for the Giant Puguang Gas Field Sichuan Basin: Implication for Petroleum Exploration in Marine Sequences in South ChinaACTA GEOLOGICA SINICA (ENGLISH EDITION), Issue 3 2008ZOU Huayao Abstract: Detailed geochemistry studies were conducted to investigate the origin of solid bitumens and hydrocarbon gases in the giant Puguang gas field. Two types of solid bitumens were recognized: low sulfur content, low reflectance (LSLR) solid bitumens in sandstone reservoirs in the Xujiahe Formation and high sulfur content, high reflectance (HSHR) solid bitumens in the carbonate reservoirs in the Lower Triassic Feixianguan and Upper Permian Changxing formations. Solid bitumens in the Upper Triassic Xujiahe Formation correlate well with extracts from the Upper Triassic to Jurassic nonmarine source rocks in isotopic composition of the saturated and aromatic fractions and biomarker distribution. Solid bitumens in the Feixianguan and Changxing formations are distinctly different from extracts from the Cambrian and Silurian rocks but display reasonable correlation with extracts from the Upper Permian source rocks both in isotopic composition of the saturated and aromatic fractions and in biomarker distribution, suggesting that the Permian especially the Upper Permian Longtan Formation was the main source of solid bitumens in the carbonate reservoirs in the Feixianguan and Changxing formations in the Puguang gas field. Chemical and isotopic composition of natural gases indicates that the majority of hydrocarbon gases originated from sapropelic organic matter and was the products of thermal cracking of accumulated oils. This study indicates that source rock dominated by sapropelic organic matter existed in the Upper Permian and had made major contribution to the giant Puguang gas field, which has important implication for petroleum exploration in marine sequences in South China. [source] Utilisation of C2,C4 gaseous hydrocarbons and isoprene by microorganismsJOURNAL OF CHEMICAL TECHNOLOGY & BIOTECHNOLOGY, Issue 3 2006Jean L Shennan Abstract Microorganisms able to grow on low molecular weight aliphatic hydrocarbon gases, i.e. the n -alkanes, ethane, propane and butane, and the terminal alkenes, ethylene, propylene and butylene, are not uncommon but mainly belong to certain taxonomic groups. These microbes are described in this review together with the pathways by which the hydrocarbons are assimilated. Microbial oxidation of the volatile alkadiene, isoprene, is also discussed. Avenues for possible commercial exploitation of these metabolic activities are also reviewed. Short-chain n -alkane-utilising organisms have been investigated as tools in petroleum exploration and for production of single cell protein. More recently microbes grown on gaseous hydrocarbons other than methane have been evaluated for use in biotechnological production of epoxides, synthesis of chiral epoxyalkanes and as catalysts in bioremediation systems. Copyright © 2005 Society of Chemical Industry [source] STRONTIUM ISOTOPE DATING OF SPICULITIC PERMIAN STRATA FROM SPITSBERGEN OUTCROPS AND BARENTS SEA WELL-CORESJOURNAL OF PETROLEUM GEOLOGY, Issue 3 2010S.N. Ehrenberg Eight samples of brachiopod shell material have been analyzed for their strontium isotope composition in order to more accurately date Lower to Upper Permian siliceous biogenic strata of Spitsbergen (Kapp Starostin Formation) and the southern Barents Sea (Røye Formation). The results are interpreted as showing a mid-Artinskian age for the basal Vøringen Member of the Kapp Starostin Formation and a range of late Artinskian to Roadian for the overlying part of this unit. The upper part of the Røye Formation yields ages in the range Roadian to Wuchiapingian. These results are consistent with available biostratigraphic data and confirm the potential of strontium isotope stratigraphy for developing a more accurate chronology of the widespread spiculite deposits that characterize the northern margin of Pangea in late-Early Permian to Late Permian time and which constitute a potential target for petroleum exploration. [source] Tectonic and climatic control on growth and demise of the Phanh Rang Carbonate Platform offshore south VietnamBASIN RESEARCH, Issue 2 2009Michael B. W. Fyhn The Phan Rang Carbonate Platform located offshore south Vietnam covers more than 15 000 km2, making it one of the largest carbonate platforms in the South China Sea. Based on 2-D seismic analysis, this paper outlines the platform evolution and analyzes the regional tectonic, climatic and oceanic factors that controlled the platform growth and demise. This study of the Phan Rang Carbonate Platform therefore provides an analogue to the regions late Neogene carbonates that form important targets for petroleum exploration. Platform growth initiated during the late middle Miocene along the open marine Vietnamese margin and continued throughout the late synrift to early postrift period of the area terminating around Pliocene time. During this period, the structural grain, local and regional tectonics as well as oceanographic effects exerted major controls on carbonate deposition. Optimal growth conditions existed during initial platform deposition and locally accumulation rates reached ca. 230 m Ma,1. Late Miocene regional uplift caused subaerial exposure that interrupted platform growth and caused intense karstification. A gradual reestablishment of marine conditions promoted renewed platform growth. However, carbonate production was stressed by increased terrigenous input caused by onshore uplift and by inorganic nutrification of the surface waters. Nutrification probably occurred in response to increased nutrient influx derived from onshore denudation, enhanced periodically by soil ravinement during transgression. The onset or intensification of summer upwelling along the southern platform margin occurred in response to the onshore uplift and most likely contributed to the nutrification. The deteriorated growth conditions and fast subsidence resulted in platform split-up, backstepping and local drowning. Subsequently, isolated platforms nucleated on structural highs as transgression continued. The remaining platforms thrived for a period but eventually failed to keep pace with subsidence, backstepped and drowned. The longest surviving platform now crops out at the seafloor at ca. 500 m depth. [source] Differences of Hydrocarbon Enrichment between the Upper and the Lower Structural Layers in the Tazhong PaleoupliftACTA GEOLOGICA SINICA (ENGLISH EDITION), Issue 5 2010JIANG Zhenxue Abstract: The Tazhong paleouplift is divided into the upper and the lower structural layers, bounded by the unconformity surface at the top of the Ordovician carbonate rock. The reservoirs in the two layers from different parts vary in number, type and reserves, but the mechanism was rarely researched before. Therefore, an explanation of the mechanism will promote petroleum exploration in Tazhong paleouplift. After studying the evolution and reservoir distribution of the Tazhong paleouplift, it is concluded that the evolution in late Caledonian, late Hercynian and Himalayan periods resulted in the upper and the lower structural layers. It is also defined that in the upper structural layer, structural and stratigraphic overlap reservoirs are developed at the top and the upper part of the paleouplift, which are dominated by oil reservoirs, while for the lower structural layer, lithological reservoirs are developed in the lower part of the paleouplift, which are dominated by gas reservoirs, and more reserves are discovered in the lower structural layer than the upper. Through a comparative analysis of accumulation conditions of the upper and the lower structural layers, the mechanism of enrichment differences is clearly explained. The reservoir and seal conditions of the lower structural layer are better than those of the upper layer, which is the reason why more reservoirs have been found in the former. The differences in the carrier system types, trap types and charging periods between the upper and the lower structural layers lead to differences in the reservoir types and distribution. An accumulation model is established for the Tazhong paleouplift. For the upper structural layer, the structural reservoirs and the stratigraphic overlap reservoirs are formed at the upper part of the paleouplift, while for the lower structural layer, the weathering crust reservoirs are formed at the top, the reef-flat reservoirs are formed on the lateral margin, the karst and inside reservoirs are formed in the lower part of the paleouplift. [source] Origin of the Silurian Crude Oils and Reservoir Formation Characteristics in the Tazhong UpliftACTA GEOLOGICA SINICA (ENGLISH EDITION), Issue 5 2010YANG Haijun Abstract: The Silurian stratum in the Tazhong uplift is an important horizon for exploration because it preserves some features of the hydrocarbons produced from multi-stage tectonic evolution. For this reason, the study of the origin of the Silurian oils and their formation characteristics constitutes a major part in revealing the mechanisms for the composite hydrocarbon accumulation zone in the Tazhong area. Geochemical investigations indicate that the physical properties of the Silurian oils in Tazhong vary with belts and blocks, i.e., heavy oils are distributed in the TZ47,15 well-block in the North Slope while normal and light oils in the No. I fault belt and the TZ16 well-block, which means that the oil properties are controlled by structural patterns. Most biomarkers in the Silurian oils are similar to that of the Mid-Upper Ordovician source rocks, suggesting a good genetic relationship. However, the compound specific isotope of n -alkanes in the oils and the chemical components of the hydrocarbons in fluid inclusions indicate that these oils are mixed oils derived from both the Mid-Upper Ordovician and the Cambrian,Lower Ordovician source rocks. Most Silurian oils have a record of secondary alterations like earlier biodegradation, including the occurrence of "UCM" humps in the total ion current (TIC) chromatogram of saturated and aromatic hydrocarbons and 25-norhopane in saturated hydrocarbons of the crude oils, and regular changes in the abundances of light and heavy components from the structural low to the structural high. The fact that the Silurian oils are enriched in chain alkanes, e.g., n -alkanes and 25-norhopane, suggests that they were mixed oils of the earlier degraded oils with the later normal oils. It is suggested that the Silurian oils experienced at least three episodes of petroleum charging according to the composition and distribution as well as the maturity of reservoir crude oils and the oils in fluid inclusions. The migration and accumulation models of these oils in the TZ47,15 well-blocks, the No. I fault belt and the TZ16 well-block are different from but related to each other. The investigation of the origin of the mixed oils and the hydrocarbon migration and accumulation mechanisms in different charging periods is of great significance to petroleum exploration in this area. [source] Origin of Crude Oil in the Lunnan Region, Tarim BasinACTA GEOLOGICA SINICA (ENGLISH EDITION), Issue 5 2010LI Sumei Abstract: The oil source of the Tarim Basin has been controversial over a long time. This study characterizes the crude oil and investigates the oil sources in the Lunnan region, Tarim Basin by adopting compound specific isotopes of n -alkanes and biomarkers approaches. Although the crude oil has a good correlation with the Middle-Upper Ordovician (O2+3) source rocks and a poor correlation with the Cambrian-Lower Ordovician (,-O1) based on biomarkers, the ,13C data of n -alkanes of the Lunnan oils show an intermediate value between ,-O1 and O2+3 genetic affinity oils, which suggests that the Lunnan oils are actually of an extensively mixed source. A quantification of oil mixing was performed and the results show that the contribution of the Cambrian-Lower Ordovician source rocks ranges from 11% to 70% (averaging 36%), slightly less than that of the Tazhong uplift. It is suggested that the inconsistency between the biomarkers and ,13C in determining the oil sources in the Lunnan Region results from multiple petroleum charge episodes with different chemical components in one or more episode(s) and different sources. The widespread marine mixed-source oil in the basin indicates that significant petroleum potential in deep horizons is possible. To unravel hydrocarbons accumulation mechanisms for the Lunnan oils is crucial to further petroleum exploration and exploitation in the region. [source] Tectono-thermal Evolution in the Bachu Uplift, Tarim Basin, ChinaACTA GEOLOGICA SINICA (ENGLISH EDITION), Issue 5 2010QIU Nansheng Abstract: The thermal evolution of source rocks in the Paleozoic has long been a problem to petroleum exploration in the Bachu uplift, Tarim basin, since the thermal history in the Paleozoic could not be rebuilt objectively due to lack of effective thermal indicators in the Lower Paleozoic successions. The apatite and zircon (U-Th)/He thermochronometry can be used as a new kind of technique to study the thermal history and tectonic uplift of sedimentary basins. Based on the measured apatite and zircon (U-Th)/He ages, apatite fission track data and equivalence vitrinite reflectance (%EVRo), the tectonothermal histories in 5 wells of the Bachu uplift were modeled. The modeling results show that there was relatively high gradient at the Early Paleozoic in the Bachu uplift and it decreased gradually during the entire Paleozoic: 33,35°C/km in the Cambrian-Ordovician, 32,33°C/km in the Silurian-Devonian, 30,32°C/km at the end of Carboniferous and 27.5,31°C/km at the end of Permian. Therefore, the thermal history can be modeled by combining multiple thermal indicators of AFT, (U-Th)/He ages and EVRo data. Especially, this provides a new method to rebuild the thermal history for the Low Paleozoic carbonate successions in the Tarim Basin. [source] Oil and Gas Accumulation in the Foreland Basins, Central and Western ChinaACTA GEOLOGICA SINICA (ENGLISH EDITION), Issue 2 2010Yan SONG Abstract: Foreland basin represents one of the most important hydrocarbon habitats in central and western China. To distinguish these foreland basins regionally, and according to the need of petroleum exploration and favorable exploration areas, the foreland basins in central and western China can be divided into three structural types: superimposed, retrogressive and reformative foreland basin (or thrust belt), each with distinctive petroleum system characteristics in their petroleum system components (such as the source rock, reservoir rock, caprock, time of oil and gas accumulation, the remolding of oil/gas reservoir after accumulation, and the favorable exploration area, etc.). The superimposed type foreland basins, as exemplified by the Kuqa Depression of the Tarim Basin, characterized by two stages of early and late foreland basin development, typically contain at least two hydrocarbon source beds, one deposited in the early foreland development and another in the later fault-trough lake stage. Hydrocarbon accumulations in this type of foreland basin often occur in multiple stages of the basin development, though most of the highly productive pools were formed during the late stage of hydrocarbon migration and entrapment (Himalayan period). This is in sharp contrast to the retrogressive foreland basins (only developing foreland basin during the Permian to Triassic) such as the western Sichuan Basin, where prolific hydrocarbon source rocks are associated with sediments deposited during the early stages of the foreland basin development. As a result, hydrocarbon accumulations in retrogressive foreland basins occur mainly in the early stage of basin evolution. The reformative foreland basins (only developing foreland basin during the Himalayan period) such as the northern Qaidam Basin, in contrast, contain organic-rich, lacustrine source rocks deposited only in fault-trough lake basins occurring prior to the reformative foreland development during the late Cenozoic, with hydrocarbon accumulations taking place relatively late (Himalayan period). Therefore, the ultimate hydrocarbon potentials in the three types of foreland basins are largely determined by the extent of spatial and temporal matching among the thrust belts, hydrocarbon source kitchens, and regional and local caprocks. [source] Tectonic Framework and Deep Structure of South China and Their Constraint to Oil-Gas Field DistributionACTA GEOLOGICA SINICA (ENGLISH EDITION), Issue 1 2009Qingchen WANG Abstract: South China could be divided into one stable craton, the Yangtze Craton (YzC), and several orogenic belts in the surrounding region, that is the Triassic Qinling-Dabie Orogenic Belt (QDOB) in the north, the Songpan-Garzê Orogenic Belt (SGOB) in the northwest, the Mesozoic-Cenozoic Three-river Orogenic Belt (TOB) in the west, the Youjiang Orogenic Belt (YOB) in the southwest, the Middle Paleozoic Huanan Orogenic Belt (HOB) in the southeast, and the Mesozoic-Cenozoic Maritime Orogenic Belt (MOB) along the coast. Seismic tomographic images reveal that the Moho depth is deeper than 40 km and the lithosphere is about 210 km thick beneath the YzC. The SGOB is characterized by thick crust (>40 km) and thin lithosphere (<150 km). The HOB, YOB and MOB have a thin crust (<40 km) and thin lithosphere (<150 km). Terrestrial heat flow survey revealed a distribution pattern with a low heat flow region in the eastern YzC and western HOB and two high heat flow regions in the TOB and MOB respectively. Such a "high-low-high" heat flow distribution pattern could have resulted from Cenozoic asthenosphere upwelling. All oil-gas fields are concentrated in the central part of the YzC. Remnant oil pools have been discovered along the southern margin of the YzC and its adjacent orogenic belts. From a viewpoint of geological and geophysical structure, regions in South China with thick lithosphere and low heat flow value, as well as weak deformation, might be the ideal region for further petroleum exploration. [source] Source Rocks for the Giant Puguang Gas Field Sichuan Basin: Implication for Petroleum Exploration in Marine Sequences in South ChinaACTA GEOLOGICA SINICA (ENGLISH EDITION), Issue 3 2008ZOU Huayao Abstract: Detailed geochemistry studies were conducted to investigate the origin of solid bitumens and hydrocarbon gases in the giant Puguang gas field. Two types of solid bitumens were recognized: low sulfur content, low reflectance (LSLR) solid bitumens in sandstone reservoirs in the Xujiahe Formation and high sulfur content, high reflectance (HSHR) solid bitumens in the carbonate reservoirs in the Lower Triassic Feixianguan and Upper Permian Changxing formations. Solid bitumens in the Upper Triassic Xujiahe Formation correlate well with extracts from the Upper Triassic to Jurassic nonmarine source rocks in isotopic composition of the saturated and aromatic fractions and biomarker distribution. Solid bitumens in the Feixianguan and Changxing formations are distinctly different from extracts from the Cambrian and Silurian rocks but display reasonable correlation with extracts from the Upper Permian source rocks both in isotopic composition of the saturated and aromatic fractions and in biomarker distribution, suggesting that the Permian especially the Upper Permian Longtan Formation was the main source of solid bitumens in the carbonate reservoirs in the Feixianguan and Changxing formations in the Puguang gas field. Chemical and isotopic composition of natural gases indicates that the majority of hydrocarbon gases originated from sapropelic organic matter and was the products of thermal cracking of accumulated oils. This study indicates that source rock dominated by sapropelic organic matter existed in the Upper Permian and had made major contribution to the giant Puguang gas field, which has important implication for petroleum exploration in marine sequences in South China. [source] |