Petrographic Observations (petrographic + observation)

Distribution by Scientific Domains


Selected Abstracts


Super-silicic garnet microstructures from an orogenic garnet peridotite, evidence for an ultra-deep (>6 GPa) origin

JOURNAL OF METAMORPHIC GEOLOGY, Issue 2 2000
Van Roermund
We report the field, petrographic and mineral chemical characteristics of relict super-silicic (=majoritic) garnet microstructures from the Otrřy peridotites in the Western Gneiss Region, Norway. The evidence for the former existence of super-silicic garnet consists of two-pyroxene exsolution microstructures from garnet. Estimates of the initial composition of the super-silicic garnet imply pressures of 6,6.5 GPa, indicating that the Otrřy garnet peridotites were derived from depths >185 km. The garnet peridotites consist of inter-banded variable compositions with c. 50% garnet peridotite and 50% garnet-free peridotite. Two distinct garnet types were identified: (a) normal matrix garnet, grain-size ,4 mm, and (b) large isolated single garnet crystals and/or (polycrystalline) garnet nodules up to 10 cm in size. Large garnet nodules occur only within limited bands within the garnet peridotites. The relicts of super-silicic garnet were exclusively found in some (not all) of the larger garnet nodules. Petrographic observations revealed that the microstructure of nodular garnet consists of the following four characteristic elements. (1) Individual garnet nodules are polycrystalline, with grain sizes of 2,8 mm. Garnet grain boundaries are straight with well-defined triple junctions. (2) Some garnet triple junctions and garnet grain boundaries are decorated by interstitial orthopyroxene. (3) Cores of larger polycrystalline garnet contain two-pyroxene exsolution microstructures. (4) Precipitation-free rims (2 mm thick) surround garnet cores containing the exsolved pyroxene microstructure. Pyroxene exsolution from super-silicic garnet was subsequently followed by brittle,ductile deformation of garnet. Both exsolved pyroxene needles and laths become undulous or truncated by fractures. Simultaneous garnet plasticity is indicated by the occurrence of high densities of naturally decorated dislocations. Transmission electron microscopy observations indicate that decoration is due to Ti-oxide precipitation. Estimates of the P,T conditions for mineral chemical equilibration were obtained from geothermobarometry. The mineral compositions equilibrated at mantle conditions around 805±40 °C and 3.2±0.2 GPa. These P,T estimates correspond to cold continental lithosphere conditions at depths of around 105 km. From a combination of both depth estimates it can be concluded that the microstructural memory of the rock extends backwards to twice as great a depth range as obtained by thermobarometric methods. Available geochronological and geochemical data of Norwegian garnet peridotites suggest a multi-stage, multi-orogenic exhumation history. [source]


AN AEOLIANITE IN THE UPPER DALAN MEMBER (KHUFF FORMATION), SOUTH PARS FIELD, IRAN

JOURNAL OF PETROLEUM GEOLOGY, Issue 2 2010
G. Frébourg
A laterally continuous, 3m thick oolitic grainstone has been studied in cores from two wells from the South Pars field (offshore Iran). This high porosity but low permeability interval occurs at the top of the gas-bearing succession in the Permian Upper Dalan Member, and is equivalent to the informally-defined K4 unit of the Khuff Formation. This interval can easily be traced between the wells and overlies high-energy marine deposits. It is composed of oomouldic, fine-grained azooic grainstones with cm-thick coarser-grained layers. Horizontal to oblique lamination or steep foresets were observed together with pinstripe lamination. Petrographic observations indicate a clean oomouldic grainstone with very thin chitonic rims associated with pedogenetic imprints as first-generation cements. Later cements include early vadose meniscus and pendant cements in coarser-grained layers and pseudophreatic cements in the finer-grained material with a tighter pore network, prior to ooid dissolution. Rhizoliths were observed in cores and thin-sections. The pedogenic imprints and the early vadose cementation, both related to emergence, as well as the presence of pinstripe lamination, suggest an aeolian depositional setting. This interval is the first aeolianite recorded within the Khuff Formation or equivalent units, and the first hydrocarbon-bearing carbonate aeolianite described in a hydrocarbon-producing unit. The discovery of aeolianites has important implications for regional sequence-stratigraphic interpretations and reservoir volume calculations. These deposits do not conform to classic subaqueous sequence stratigraphy and do not record eustatic variations in the associated marine basin. Their recognition is crucial for well-to-well correlations. [source]


SHAFT-HOLE AXES FROM SLOVENIA AND NORTH-WESTERN CROATIA: A FIRST ARCHAEOMETRIC STUDY ON ARTEFACTS MANUFACTURED FROM META-DOLERITES*

ARCHAEOMETRY, Issue 6 2009
F. BERNARDINI
A group of Copper Age shaft-hole axes from Caput Adriae (northeastern Italy, western Slovenia and northwestern Croatia) manufactured using meta-dolerite have been analysed for major and trace elements. All the samples show magmatic textures and well recognizable relicts of primary mineralogical phases. Petrographic observations suggest an ophiolitic provenance of the protolithic source(s) while geochemical data indicate that the original magmas originated in a fore arc or pre arc tectonic setting. Strong similarity has been found with several lithotypes from the Banija Ophiolite Complex (Croatia), here indicated as the most probable source area. Considering the available archaeometric data about shaft-hole axes found in northern Italy and Caput Adriae in comparison to those of axe blades discovered in the same area, it emerges that there is a utilization of different rock types, the source of which appears to be quite close to the discovery sites. In the investigated area the shaft-hole axes are largely made from ophiolitic-related rocks which are associated with copper deposits. Consequently there may have been a relation between the localization of the geological sources of shaft-hole axes and the development of metallurgical activities. [source]


Role of fluids in the metamorphism of the Alpine Fault Zone, New Zealand

JOURNAL OF METAMORPHIC GEOLOGY, Issue 1 2001
J. K. Vry
Abstract Models of fluid/rock interaction in and adjacent to the Alpine Fault in the Hokitika area, South Island, New Zealand, were investigated using hydrogen and other stable isotope studies, together with field and petrographic observations. All analysed samples from the study area have similar whole-rock ,D values (,DWR = ,56 to ,30,, average = ,45,, n = 20), irrespective of rock type, degree of chloritization, location along the fault, or across-strike distance from the fault in the garnet zone. The green, chlorite-rich fault rocks, which probably formed from Australian Plate precursors, record nearly isothermal fluid/rock interaction with a schist-derived metamorphic fluid at high temperatures near 450,500°C (,D of water in equilibrium with the green fault rocks (,DH2O, green) ,,,18,; ,D of water in equilibrium with the greyschists and greyschist-derived mylonites (,DH2O, grey) , ,19, at 500°C; ,DH2O, green , ,17,; ,DH2O, grey , ,14, at 450°C). There is no indication of an influx of a meteoric or mantle-derived fluid in the Alpine Fault Zone in the study area. The Alpine Fault Zone at the surface shows little evidence of late-stage retrogression or veining, which might be attributed to down-temperature fluid flow. It is probable that prograde metamorphism in the root zone of the Southern Alps releases metamorphic fluids that at some region rise vertically rather than following the trace of the Alpine Fault up to the surface, owing to the combined effects of the fault, the disturbed isotherms under the Southern Alps, and the brittle,ductile transition. Such fluids could mix with meteoric fluids to deposit quartz-rich, possibly gold-bearing veins in the region c. 5,10 km back from the fault trace. These results and interpretations are consistent with interpretations of magnetotelluric data obtained in the South Island GeopHysical Transects (SIGHT) programme. [source]


Magmatic evolution of the Mantos Blancos copper deposit, Coastal Range of northern Chile: insight from Sr,Nd isotope, geochemical data and silicate melt inclusions

RESOURCE GEOLOGY, Issue 2 2008
Luis E. Ramírez
Abstract The Mantos Blancos copper deposit (500 Mt at 1.0% Cu) was affected by two superimposed hydrothermal events: (i) phyllic alteration related to a rhyolitic dome emplacement and brecciation at ca 155 Ma; and (ii) potassic, sodic and propylitic alteration at ca 142 Ma, coeval with stocks and sills emplacement of dioritic and granodioritic porphyries, that locally grade upwards into polymictic magmatic hydrothermal breccias. Major hypogene copper sulfide mineralization is related to the second event. A late-ore mafic dike swarm cross-cuts all rocks in the deposit. Two types of granodioritic porphyries can be distinguished from petrographic observations and geochemical data: granodiorite porphyry I (GP I) and granodiorite porphyry II (GP II), which resulted from two different trends of magmatic evolution. The concave shape of the rare earth element (REE) distribution pattern together with the weak or absence of negative Eu anomalies in mafic dikes, dioritic and GP I porphyries, suggest hornblende-dominated fractionation for this magmatic suite. In contrast, distinct negative Eu anomalies and the flat REE patterns suggest plagioclase-dominated fractionation, at low oxygen fugacity, for the GP II porphyry suite. But shallow mixing and mingling between silicic and dioritic melts are also likely for the formation of the GP II and polymictic breccias, respectively. Sr-Nd isotopic compositions suggest that the rhyolitic dome rocks were generated from a dominantly crustal source, while the GP I has mantle affinity. The composition of melt inclusions (MI) in quartz crystals from the rhyolitic dome is similar to the bulk composition of their host rock. The MI analyzed in quartz from GP II and in the polymictic magmatic hydrothermal breccia of the deposit are compositionally more evolved than their host rocks. Field, geochemical and petrographic data provided here point to dioritic and siliceous melt interaction as an inducing mechanism for the release of hydrothermal fluids to form the Cu mineralization. [source]