Home About us Contact | |||
Articular Cartilage Explants (articular + cartilage_explant)
Selected AbstractsCalcium signaling leads to mitochondrial depolarization in impact-induced chondrocyte death in equine articular cartilage explantsARTHRITIS & RHEUMATISM, Issue 7 2007C. A. M. Huser Objective Chondrocyte apoptosis is an important factor in the progression of osteoarthritis. This study aimed to elucidate the mechanisms involved upstream of caspase 9 activation and, in particular, calcium signaling and mitochondrial depolarization. Methods Articular cartilage explants obtained from healthy horses were subjected to a single impact load (500-gm weight dropped from a height of 50 mm) and cultured in vitro for up to 48 hours. Chondrocyte death was quantified by the TUNEL method. Release of proteoglycans was determined by the dimethylmethylene blue assay. Weight change was measured, and mitochondrial depolarization was determined using JC-1 staining. To assess the role of calcium signaling in impact-induced chondrocyte death, explants were preincubated in culture medium containing various concentrations of calcium. Inhibitors were used to assess the role of individual signaling components in impact-induced chondrocyte death. Results Calcium quenching, inhibitors of calpains, calcium/calmodulin-regulated kinase II (CaMKII), and mitochondrial depolarization reduced impact-induced chondrocyte death after 48 hours in culture. Transient mitochondrial depolarization was observed 3,6 hours following a single impact load. Mitochondrial depolarization was prevented by calcium quenching, inhibitors of calpain, CaMKII, permeability transition pore formation, ryanodine receptor, and the mitochondrial uniport transporter. Cathepsin B did not appear to be involved in impact-induced chondrocyte death. The calpain inhibitor prevented proteoglycan loss, but the percentage weight gain and proteoglycan loss were unaffected by all treatments used. Conclusion Following a single impact load, calcium is released from the endoplasmic reticulum via the ryanodine receptor and is taken up by the mitochondria via the uniport transporter, causing mitochondrial depolarization and caspase 9 activation. In addition, calpains and CaMKII play important roles in causing mitochondrial depolarization. [source] Reversal of suppressed metabolism in prolonged cold preserved cartilageJOURNAL OF ORTHOPAEDIC RESEARCH, Issue 2 2008Tamara K. Pylawka Abstract Chondrocytes in cold preserved cartilage are metabolically suppressed. The goal of this study was to address this metabolic suppression and seek ways to reverse it. Specifically, we examined the roles of rewarming protocols and nitric oxide (NO) in this metabolic suppression. Bovine and canine full-thickness articular cartilage explants were cultured under various temperature conditions, and NO production, proteoglycan (PG) synthesis, and cell viability were measured. Nitric oxide was shown to be negatively correlated with PG synthesis following abrupt rewarming of cold preserved osteochondral allografts. Gradual rewarming of the allograft tissue decreased NO production with higher PG synthesis. Inhibition of nitric oxide synthases (NOS) led to a decrease in NO production and a concomitant increase in PG synthesis. We were able to partially reverse metabolic suppression of cold preserved osteochondral allograft material with gradual rewarming and decrease NO production with NOS inhibition. Chondrocytes in cold preserved allograft material may be metabolically suppressed predisposing the graft to failure in vivo. Minimizing this loss of metabolic function by gradual graft rewarming and decreasing NO production by NOS inhibition at the time of graft implantation may have implications on graft survival in vivo. © 2007 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 26:247,254, 2008 [source] Overexpression of human fibroblast growth factor 2 stimulates cell proliferation in an ex vivo model of articular chondrocyte transplantation,THE JOURNAL OF GENE MEDICINE, Issue 2 2004Henning Madry Abstract Background Genetically engineered chondrocytes could be used to enhance cartilage repair. Fibroblast growth factor 2 (FGF-2) is a mitogen for chondrocytes and may be a candidate for gene transfer approaches to stimulate chondrocyte proliferation. In the present study, we tested the hypothesis that human FGF-2 (hFGF-2) gene transfer into articular chondrocytes modulates cell proliferation in an ex vivo model of chondrocyte transplantation. Methods Transfection of articular chondrocytes with an expression plasmid vector carrying the cDNA for hFGF-2 under the control of the cytomegalovirus promoter/enhancer mediated transgene expression and synthesis of biologically relevant amounts of the recombinant hFGF-2 protein. Articular chondrocytes transfected with the Escherichia coli ,-galactosidase (lacZ) gene or a hFGF-2 cDNA were transplanted onto the surface of articular cartilage explants. Results The tissue formed by the chondrocytes expressing hFGF-2 was thicker and contained more cells than control cultures. Quantitative analysis of [3H]thymidine and [35S]sulfate incorporation in composite cultures revealed that hFGF-2 transfection stimulated mitogenic activity in the new tissue but did not augment matrix glycosaminoglycan synthesis. Conclusions These data support the concept that chondrocytes overexpressing a hFGF-2 cDNA selectively modulate cell proliferation in an ex vivo model of chondrocyte transplantation. These results suggest that therapeutic hFGF-2 gene transfer may be applicable for the treatment of articular cartilage disorders, such as traumatic defects in which cellular repopulation is a therapeutic goal. Copyright © 2004 John Wiley & Sons, Ltd. [source] Mechanotransduction of bovine articular cartilage superficial zone protein by transforming growth factor , signalingARTHRITIS & RHEUMATISM, Issue 11 2007Corey P. Neu Objective Mechanical signals are key determinants in tissue morphogenesis, maintenance, and restoration strategies in regenerative medicine, although molecular mechanisms of mechanotransduction remain to be elucidated. This study was undertaken to investigate the mechanotransduction process of expression of superficial zone protein (SZP), a critical joint lubricant. Methods Regional expression of SZP was first quantified in cartilage obtained from the femoral condyles of immature bovines, using immunoblotting, and visualized by immunohistochemistry. Contact pressure mapping in whole joints was accomplished using pressure-sensitive film and a load application system for joint testing. Friction measurements on cartilage plugs were acquired under boundary lubrication conditions using a pin-on-disk tribometer modified for reciprocating sliding. Direct mechanical stimulation by shear loading of articular cartilage explants was performed with and without inhibition of transforming growth factor , (TGF,) signaling, and SZP content in media was quantified by enzyme-linked immunosorbent assay. Results An unexpected pattern of SZP localization in knee cartilage was initially identified, with anterior regions exhibiting high levels of SZP expression. Regional SZP patterns were regulated by mechanical signals and correlated with tribological behavior. Direct relationships were demonstrated between high levels of SZP expression, maximum contact pressures, and low friction coefficients. Levels of SZP expression and accumulation were increased by applying shear stress, depending on location within the knee, and were decreased to control levels with the use of a specific inhibitor of TGF, receptor type I kinase and subsequent phospho-Smad2/3 activity. Conclusion These findings indicate a new role for TGF, signaling in the mechanism of cellular mechanotransduction that is especially significant for joint lubrication. [source] Calcium signaling leads to mitochondrial depolarization in impact-induced chondrocyte death in equine articular cartilage explantsARTHRITIS & RHEUMATISM, Issue 7 2007C. A. M. Huser Objective Chondrocyte apoptosis is an important factor in the progression of osteoarthritis. This study aimed to elucidate the mechanisms involved upstream of caspase 9 activation and, in particular, calcium signaling and mitochondrial depolarization. Methods Articular cartilage explants obtained from healthy horses were subjected to a single impact load (500-gm weight dropped from a height of 50 mm) and cultured in vitro for up to 48 hours. Chondrocyte death was quantified by the TUNEL method. Release of proteoglycans was determined by the dimethylmethylene blue assay. Weight change was measured, and mitochondrial depolarization was determined using JC-1 staining. To assess the role of calcium signaling in impact-induced chondrocyte death, explants were preincubated in culture medium containing various concentrations of calcium. Inhibitors were used to assess the role of individual signaling components in impact-induced chondrocyte death. Results Calcium quenching, inhibitors of calpains, calcium/calmodulin-regulated kinase II (CaMKII), and mitochondrial depolarization reduced impact-induced chondrocyte death after 48 hours in culture. Transient mitochondrial depolarization was observed 3,6 hours following a single impact load. Mitochondrial depolarization was prevented by calcium quenching, inhibitors of calpain, CaMKII, permeability transition pore formation, ryanodine receptor, and the mitochondrial uniport transporter. Cathepsin B did not appear to be involved in impact-induced chondrocyte death. The calpain inhibitor prevented proteoglycan loss, but the percentage weight gain and proteoglycan loss were unaffected by all treatments used. Conclusion Following a single impact load, calcium is released from the endoplasmic reticulum via the ryanodine receptor and is taken up by the mitochondria via the uniport transporter, causing mitochondrial depolarization and caspase 9 activation. In addition, calpains and CaMKII play important roles in causing mitochondrial depolarization. [source] |