Home About us Contact | |||
Permeability Decreases (permeability + decrease)
Selected AbstractsCLARIFICATION AND PURIFICATION OF AQUEOUS STEVIA EXTRACT USING MEMBRANE SEPARATION PROCESSJOURNAL OF FOOD PROCESS ENGINEERING, Issue 3 2009M.H.M. REIS ABSTRACT Stevia rebaudiana Bertoni is a native plant from South America and its active constituents have been considered the "sweeteners of the future."Stevia is a natural diet-sweetening source, safe to health and without calories. However, the obtained raw extract is foul smelling, bitter tasting, dark brown colored, and presents suspension matter due to organic and inorganic compounds. Therefore, further purification/clarification is essential in order to get a product of commercial quality. In this work ceramic membranes were applied in the stevia extract clarification process. The process was carried out under different membrane pore sizes and at different pressure values. The best clarification result was obtained with the membrane of 0.1 µm at 4 bar. On the other hand, the best condition for the flux was obtained with the membrane of 0.2 µm at 6 bar. The process with all the tested membranes and conditions achieved recovery of sweeteners higher than 90%. Finally, a filtration mathematical model was applied to describe the flux behavior, showing that the main fouling phenomenon during the process occurred because of the complete blocking of pores. PRACTICAL APPLICATION Stevia is the world's only all-natural sweetener with zero calories, zero carbohydrates and a zero glycemic index. However, the obtained stevia extract has a dark brown appearance, mainly because of the presence of impurities. In this work the membrane separation process was studied for stevia extract clarification and purification in order to get a product with higher commercial acceptability. The obtained results showed that total clarification and recuperation of sweeteners was almost achieved. Nonetheless, membrane fouling is an inevitable problem during membrane filtration. The mathematical analysis of the fouling occurrences showed that the complete blocking of pores is the main cause for the membrane permeability decrease. [source] Dependence of the permeability-frequency spectra of Fe88Zr7B4Cu alloys on dc magnetic fieldsPHYSICA STATUS SOLIDI (A) APPLICATIONS AND MATERIALS SCIENCE, Issue 1 2004W. Qin Abstract Effects of applied dc transverse and longitudinal magnetic fields on the dynamic magnetization of Nanoperm alloys are studied by using permeability spectroscopy. It is observed that the permeability-frequency spectra of Nanoperm alloys are very sensitive to the dc transverse magnetic fields. The applied dc transverse magnetic fields may strengthen the domain wall pinning, making the permeability decrease and the relaxation frequency move toward higher frequency. The dc longitudinal magnetic fields have no significant influence on the permeability-frequency spectra. The contribution to initial permeability only results from the bulging of the domain walls parallel to the applied ac magnetic field. The effect of the Earth's magnetic field on the dynamic magnetic properties of Nanoperm alloys must be considered in actual application. (© 2004 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim) [source] Analytic Determination of Hydrocarbon Transmissivity from Baildown TestsGROUND WATER, Issue 1 2000David Huntley Hydrocarbon baildown tests involve the rapid removal of floating hydrocarbon from an observation or production well, followed by monitoring the rate of recovery of both the oil/air and oil/water interfaces. This test has been used erroneously for several years to calculate the "true thickness" of hydrocarbon in the adjacent formation. More recent analysis of hydrocarbon distribution by Farr et al. (1990), Lenhard and Parker (1990), Huntley et al. (1994), and others have shown that, under vertical equilibrium conditions, there is no thickness exaggeration of hydrocarbon in a monitoring well, though there is a significant volume exaggeration. This body of work can be used to demonstrate that the calculation of a "true hydrocarbon thickness" using a baildown test has no basis in theory. The same body of work, however, also demonstrates that hydrocarbon saturations are typically much less than one, and are often below 0.5. Because the relative permeability decreases as hydrocarbon saturation decreases, the effective conductivity and mobility of the hydrocarbon is much less than that of water, even ignoring the effects of increased viscosity and decreased density. It is important to evaluate this decreased mobility of hydrocarbon due to partial pore saturation, as it has substantial impacts on both risk and remediation. This paper presents two analytic approaches to the analysis of hydrocarbon baildown test results to determine hydrocarbon transmissivity. The first approach is based on a modification of the Bouwer and Rice (1976) analysis of slug withdrawal test data. The second approach is based on a modification of Jacob and Lohman's (1952) constant drawdown,variable discharge aquifer test approach. The first approach can be applied only when the effective water transmissivity across the screened interval to water is much greater than the effective hydrocarbon transmissivity. When this condition is met, the two approaches give effectively identical results. [source] Is Leptin the Link Between Fat and Bone Mass?,JOURNAL OF BONE AND MINERAL RESEARCH, Issue 9 2002Thierry Thomas Ph.D. Abstract Recently, leptin has emerged as a potential candidate responsible for protective effects of fat on bone tissue. However, it remains difficult to draw a clear picture of leptin effects on bone metabolism because published data are sometimes conflicting or apparently contradictory. Beyond differences in models or experimental procedures, it is tempting to hypothesize that leptin exerts dual effects depending on bone tissue, skeletal maturity, and/or signaling pathway. Early in life, leptin could stimulate bone growth and bone size through direct angiogenic and osteogenic effects on stromal precursor cells. Later, it may decrease bone remodeling in the mature skeleton, when trabecular bone turnover is high, by stimulating osteoprotegerin (OPG) expression. Leptin negative effects on bone formation effected through central nervous system pathway could counterbalance these peripheral and positive effects, the latter being predominant when the blood-brain barrier permeability decreases or the serum leptin level rises above a certain threshold. Thus, the sex-dependent specificity of the relationship between leptin and bone mineral density (BMD) in human studies could be, at least in part, caused by serum leptin levels that are two- to threefold higher in women than in men, independent of adiposity. Although these hypotheses remain highly speculative and require further investigations, existing studies consistently support the role of leptin as a link between fat and bone. [source] Influence of film thickness on the electrical and magnetic properties of Co,Fe,Al,O filmsPHYSICA STATUS SOLIDI (C) - CURRENT TOPICS IN SOLID STATE PHYSICS, Issue 12 2007M. H. Phan Abstract Influence of film thickness (t) on the electrical and magnetic properties of Co,Fe,Al,O films has been systematically investigated via means of vibrating sample magnetometry (VSM), permeability spectra and magneto-optical Kerr effect (MOKE). It is found that the electrical resistivity (,) decreases as the film thickness increases; , = 412.5 µ,cm for the t = 600 nm sample decreases to , = 368.2 µ,cm for the t = 1200 nm sample. The coercive force, measured along the easy-axis direction, decreases as the film thickness increases. Interestingly, along the hard-axis magnetization direction, the magnetic hysteresis loop is reversed and the coercive force is negative for the t = 600 and 800 nm samples. However, this peculiar feature disappears as t reaches 1200 nm, which is probably attributed to the microstructural change with respect to changes of film thickness. At a frequency of 1GHz, the hard-axis effective permeability decreases from 1252 to 1000 as the film thickness increases from 600 to 1200 nm, respectively. The VSM and MOKE results reveal an increase in magnetic anisotropy in the near-surface region of the film. (© 2008 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim) [source] Physicochemical and electrochemical characterizations of organic montmorillonite (OMMT)/sulfonated poly(ether ether ketone) (SPEEK) composite membranesASIA-PACIFIC JOURNAL OF CHEMICAL ENGINEERING, Issue 1 2010R. Gosalawit Abstract Physicochemical and electrochemical properties of the organic montmorillonite (OMMT)/sulfonated poly(ether ether ketone) (SPEEK) composite membranes are considered for their use as proton conducting membranes. The paper presents the preparation and characterization of SPEEK and its composite membranes with OMMT as well as their comparison to the reference Nafion® 117 membrane. Water uptake and thermal property (Td1) are improved when the OMMT loading content increases. Methanol permeability decreases as OMMT loading content increases up to as high as 53% (5 wt% OMMT/SPEEK composite membrane). For proton conductivity, all membranes show improvement when the operating temperature increases from 25 to 90 °C. The proton conductivity at 100 °C of 3 wt% OMMT/SPEEK composite membrane (5.6 × 10,2 S/cm) is one order of magnitude higher than that of Nafion® 117 (2 × 10,3 S/cm). Copyright © 2009 Curtin University of Technology and John Wiley & Sons, Ltd. [source] Coalbed Methane-bearing Characteristics and Reservoir Physical Properties of Principal Target Areas in North ChinaACTA GEOLOGICA SINICA (ENGLISH EDITION), Issue 3 2004TANG Shuheng Abstract, The coalbed methane (CBM) resources in North China amounts up to 60% of total resources in China. North China is the most important CBM accumulation area in China. The coal beds of the Upper Paleozoic Taiyuan and Shanxi formations have a stable distribution. The coal reservoir of target areas such as Jincheng, Yanquan-Shouyang, Hancheng, Liulin, etc. have good CBM-bearing characteristics, high permeability and appropriate reservoir pressure, and these areas are the preferred target areas of CBM developing in China. The coal reservoirs of Wupu, Sanjiaobei, Lu'an, Xinmi, Anyang-Hebi, Jiaozuo, Xinggong and Huainan also have as good CBM-bearing characteristics, but the physical properties of coal reservoirs vary observably. So, further work should be taken to search for districts with high pressure, high permeability and good CBM-bearing characteristics. Crustal stresses have severe influence on the permeability of coal reservoirs in North China. From west to east, the crustal stress gradient increases, while the coal reservoirs permeability decreases. [source] |