Permeability Barrier Function (permeability + barrier_function)

Distribution by Scientific Domains


Selected Abstracts


Transepidermal water loss reflects permeability barrier status: validation in human and rodent in vivo and ex vivo models

EXPERIMENTAL DERMATOLOGY, Issue 7 2006
Joachim W. Fluhr
Abstract:, Permeability barrier function is measured with instruments that assess transepidermal water loss (TEWL), either with closed- or open-loop systems. Yet, the validity of TEWL as a measure of barrier status has been questioned recently. Hence, we tested the validity of this measure by comparing TEWL across a wide range of perturbations, with a variety of methods, and in a variety of models. TEWL rates with two closed-chamber systems (VapoMeter and H4300) and one closed-loop system (MEECO) under different experimental in vivo conditions were compared with data from four open-loop instruments, i.e. TM 210, TM 300, DermaLab and EP 1. The instruments were compared in vivo both in humans and hairless mice skin subjected to different degrees of acute barrier disruption. The values obtained with bioengineering systems were correlated with absolute water loss rates, determined gravimetrically. Measurements with both closed and open systems correlated not only with each other, but each method detected different degrees of barrier dysfunction. Although all instruments differentiated among gradations in TEWL in the mid-range of barrier disruption in vivo, differences in very low and very high levels of disruption were less accurately measured with the H4300 and DermaLab systems. Nevertheless, a high Pearson correlation coefficient (r) was calculated for data from all instruments vs. gravimetrically assessed TEWL. Together, these results verify the utility of TEWL as a measure of permeability barrier status. Moreover, all tested instruments are reliable tools for the assessment of variations in permeability barrier function. [source]


Abstracts: The effects of licorice leaf extract on ceramide and hyaluronan synthesis

INTERNATIONAL JOURNAL OF COSMETIC SCIENCE, Issue 5 2010
Akinori Kiso
pp.267,273 Both water-holding and permeability barrier function in the stratum corneum (SC) are essential for keeping skin moisture. Intercellular lipids in SC, which are composed mainly of cholesterol, fatty acids, and ceramides, play a crucial role for maintaining the function in SC. The object of our study is to find active ingredients from plant extracts for enhancing the abilities of skin hydration and barrier repair by focusing on the synthesis of ceramides. As a result, we found that licorice leaf extract is a promising ingredient showing not only an increase of mRNA expression levels of serine palmytoyltransferase (SPT) and sphingomyelinase related to ceramide biosynthesis in keratinocytes but also syntheses of ceramides in a 3D skin model and in human skin. Furthermore, licorice leaf extract showed an increase of mRNA expression levels of HMG-CoA reductase (HMGCR) related to cholesterol biosynthesis and an increase of hyaluronan (HA) production in in vitro tests. One of the principles isolated from licorice leaf extract, 6-prenyl-naringenin, was thought to be one of the active components. These results suggested that licorice leaf extract may be a useful ingredient for skin care due to the synthesis of intercellular lipids and HA [source]


Barrier requirements as the evolutionary "driver" of epidermal pigmentation in humans

AMERICAN JOURNAL OF HUMAN BIOLOGY, Issue 4 2010
Peter M. Elias
Current explanations for the development of epidermal pigmentation during human evolution are not tenable as stand-alone hypotheses. Accordingly, we assessed instead whether xeric- and UV-B-induced stress to the epidermal permeability barrier, critical to survival in a terrestrial environment, could have "driven" the development of epidermal pigmentation. (1) Megadroughts prevailed in central Africa when hominids expanded into open savannahs [,1.5,0.8 million years ago], resulting in sustained exposure to both extreme aridity and erythemogenic UV-B, correlating with genetic evidence that pigment developed ,1.2 million years ago. (2) Pigmented skin is endowed with enhanced permeability barrier function, stratum corneum integrity/cohesion, and a reduced susceptibility to infections. The enhanced function of pigmented skin can be attributed to the lower pH of the outer epidermis, likely due to the persistence of (more-acidic) melanosomes into the outer epidermis, as well as the conservation of genes associated with eumelanin synthesis and melanosome acidification (e.g., TYR, OCA2 [p protein], SLC24A5, SLC45A2, MATP) in pigmented populations. Five keratinocyte-derived signals (stem cell factor,KIT; FOXn1,FGF2; IL-1,, NGF, and p53) are potential candidates to have stimulated the sequential development of epidermal pigmentation in response to stress to the barrier. We summarize evidence here that epidermal interfollicular pigmentation in early hominids likely evolved in response to stress to the permeability barrier. Am. J. Hum. Biol., 2010. © 2010 Wiley-Liss, Inc. [source]


In Vitro Antioxidant and In Vivo Photoprotective Effects of an Association of Bioflavonoids with Liposoluble Vitamins

PHOTOCHEMISTRY & PHOTOBIOLOGY, Issue 3 2006
Patrícia M. B. G. Maia Campos
ABSTRACT A new tendency in cosmetic formulations is the association of botanical extracts and vitamins to improve skin conditions by synergic effects. The objective of this study was to determine the antioxidant activity of associated bioflavonoids, retinyl palmitate (RP), tocopheryl acetate (TA) and ascorbyl tetra-isopalmitate (ATIP), as well as their photoprotective effects in preventing increased erythema, transepidermal water loss (TEWL) and sunburn cell formation in hairless mouse skin. The antioxidant activity of solutions containing the association or each substance separately was evaluated in vitro by a chemiluminescence assay. The photoprotective effect was evaluated by means of in vivo tests. Dorsal skin of hairless mice was treated daily by topical applications for 5 days with formulations containing or not containing (vehicle) the flavonoid-vitamins association (5%). The skin was irradiated (UVA/B) 15 minutes after the last application. The results showed that bioflavonoids had in vitro antioxidant properties and also that when they were associated with vitamins their antioxidant activity was more pronounced. On the other hand, erythema and UV damage to the permeability barrier function (TEWL) was not significantly reduced by previous treatment with the flavonoid-vitamin-association formulations, when compared to the irradiated vehicle-treated area. However, the treatment protected the skin from UV damage because it reduced the number of sunburn cells, when compared to the vehicle-treated area. Finally, the association of vitamins and bioflavonoids added to a dermocosmetic formulation showed a relevant biological activity in terms of photoprotection, because the association of bioflavonoids and vitamins acted by different mechanisms, such as antioxidation and absorption of UV radiation, which suggests its use in antiaging and photoprotective products. [source]


Sequential application of cold and sodium lauryl sulphate decreases irritation and barrier disruption in vivo in humans

BRITISH JOURNAL OF DERMATOLOGY, Issue 4 2005
J.W. Fluhr
Summary Background, Irritant contact dermatitis (ICD) is one of the most frequent types of occupational dermatitis. Different factors are involved in the development of contact dermatitis. In the food-processing industry, the combined exposure to different irritants may be involved in the development of ICD. Few data have been published regarding the irritant potential of sodium lauryl sulphate (SLS) in combination with cold. Objectives, The present study was intended to analyse whether cold exposure and low skin temperature influence the development of ICD. Methods, Twenty (part I) and 12 (part II) healthy volunteers were exposed twice daily for 4 days to SLS alone, different low temperatures alone (4 °C six times for 90 s with an interval of 20 s or 15 °C for 10 min) or a combination of cold and SLS (19·6 µL SLS 1% cm,2, part I; or 52·6 µL SLS 0·5% cm,2, part II) using the tandem repetitive irritation test. Irritant cutaneous reactions were measured by noninvasive biophysical methods with transepidermal water loss as a parameter for permeability barrier function and skin colour reflectance together with visual scoring as parameters for inflammatory reactions. Results, Cold alone caused no significant skin reaction compared with untreated control. Exposure to SLS alone and SLS together with cold (independent of the applied temperature of 4 or 15 °C) twice daily induced a clear irritant reaction and barrier disturbance. Reactions did not differ whether SLS was applied before or after cold. Furthermore, ,tandem application' of cold and SLS diminished the barrier disruption and irritant reaction compared with SLS alone. Conclusions, We conclude that the application of cold may have a protective effect on the development of ICD, at least in our short-term model. [source]