Perforant Path (perforant + path)

Distribution by Scientific Domains


Selected Abstracts


Furosemide Terminates Limbic Status Epilepticus in Freely Moving Rats

EPILEPSIA, Issue 9 2003
Martin Holtkamp
Summary:,Purpose: To evaluate the anticonvulsant properties of furosemide and to determine sedative side effects compared with pentobarbital and diuretic side effects compared with saline-treated controls in an experimental model of limbic status epilepticus. Methods: Self-sustaining status epilepticus was induced in rats by continuous electrical stimulation of the perforant path. Five minutes after the end of the stimulation, animals were given 100 mg/kg furosemide, 30 mg/kg pentobarbital, or an equal amount of saline, intraperitoneally. After administration of the substance, animals were monitored clinically and electrographically for 3 h regarding status epilepticus, level of sedation, and diuresis. Results: In seven of 10 animals, furosemide terminated status epilepticus after 68 ± 26 min, whereas pentobarbital was successful in all animals after 5 ± 0.8 min. In contrast to pentobarbital, sedation did not occur with furosemide. Weight loss after furosemide was 10.2 ± 1.7% compared with 6.5 ± 1.1% in animals given saline (p < 0.001). Conclusions: The results suggest that furosemide may serve as an alternative or additional agent for refractory complex partial status epilepticus in patients in whom common anesthetics are not justifiable. [source]


Felbamate in Experimental Model of Status Epilepticus

EPILEPSIA, Issue 2 2000
Andrey M. Mazarati
Summary: Purpose: To examine the putative seizure-protective properties of felbarnate in an animal model of self-sustaining status epilepticus (SSSE). Methods: SSSE was induced by 30-min stimulation of the perforant path (PPS) through permanently implanted electrodes in free-running male adult Wistar rats. Felbarnate (FBM; 50, 100, and 200 mg/kg), dizepam (DZP; 10 mg/kg), or phenytoin (PHT; 50 mg/kg) were injected i.v. 10 min after SSSE induction. Electrographic manifestations of SSSE and the severity of SSSE-induced neuronal injury were analyzed. Results: Felbamate injected during the early stages of SSSE (10 min after the end of PPS), shortened the duration of seizures in a dose-dependent manner. Total time spent in seizures after FBM and 290 ± 251 min (50 mg/kg), 15.3 ± 9 min (100 mg/kg), and 7 ± 1 min (200 mg/kg), whereas control animals spent 410 ± 133 min seizing. This effect of FBM was stronger than that of DZP (10 mg/kg, 95 ± 22 min) and comparable to that of PHT (50 mg/kg, 6.3 ± 2.5 min). In the applied doses, FBM (200 mg/kg) was more effective than PHT (50 mg/kg) or DZP (10 mg/kg) in shortening seizure duration and decreasing spike frequency, when administered on the pleateau of SSSE (injection 40 min after the end of PPS). Anticonvulsant action of FBM was confirmed by milder neuronal injury compared with control animals. Conclusions: Felbamate, a clinically available AED with a moderate affinity for the glycine site of the NMDA receptor, displayed a potent seizure-protective effect in an animal model of SSSE. These results suggest that FBM might be useful when standard AEDs fail in the treatment of refractory cases of SE. [source]


Hippocampal long-term depression as an index of spatial working memory

EUROPEAN JOURNAL OF NEUROSCIENCE, Issue 5 2002
Kazuhito Nakao
Abstract Long-term potentiation (LTP), a form of synaptic plasticity in the hippocampus, is a cellular model for the neural basis of learning and memory, but few studies have investigated the contribution of long-term depression (LTD), a counterpart of LTP. To address the possible relationship between hippocampal LTD and spatial performance, the spatial cognitive ability of a rat was assessed in a spontaneous alternation test and, thereafter, LTD in response to low-frequency burst stimulation (LFBS) was monitored in the dentate gyrus of the same rat under anaesthesia. To enhance a divergence in the ability for spatial performance, some of the animals received fimbria,fornix (FF) transection 14 days before the experiments. LTD was reliably induced by application of LFBS to the medial perforant path of intact rats, while no apparent LTD was elicited in rats with FF lesions. The behavioural parameters of spatial memory showed a significant correlation with the magnitude of LTD. We found no evidence that the cognitive ability correlated with other electrophysiological parameters, e.g. basal synaptic responses, stimulus intensity to produce half-maximal responses, paired-pulse facilitation or paired-pulse depression. These results suggest that the magnitude of LTD in the dentate gyrus serves as a reliable index of spatial cognitive ability, providing insights into the functional significance of hippocampal LTD. [source]


Glutamate transporter expression in astrocytes of the rat dentate gyrus following lesion of the entorhinal cortex

EUROPEAN JOURNAL OF NEUROSCIENCE, Issue 10 2001
C. Hein
Abstract The glutamate transporters GLT-1 and GLAST localized in astrocytes are essential in limiting transmitter signalling and restricting harmful receptor overstimulation. To show changes in the expression of both transporters following lesion of the entorhinal cortex (and degeneration of the glutamatergic tractus perforans), quantitative microscopic in situ hybridization (ISH) using alkaline-phosphatase-labelled oligonucleotide probes was applied to the outer molecular layer of the hippocampal dentate gyrus of rats (termination field of the tractus perforans). Four groups of rats were studied: sham-operated controls, and animals 3, 14 and 60 days following unilateral electrolytic lesion of the entorhinal cortex. The postlesional shrinkage of the terminal field of the perforant path, ipsilateral to the lesion side, was determined and considered in the evaluation of quantitative ISH data. Statistical analysis revealed that ipsilateral to the lesion side there was a significant decrease of the GLT-1 mRNA at every postlesional time-point and of the GLAST mRNA at 14 and 60 days postlesion. The maximal decrease was ,,45% for GLT-1 and ,,35% for GLAST. In the terminal field of the perforant path contralateral to the lesion side, no significant changes of ISH labelling were measured. The results were complemented by immunocytochemical data achieved using antibodies against synthetic GLT-1 and GLAST peptides. In accordance with ISH results, there was an obvious decrease of GLT-1 and GLAST immunostaining in the terminal field of the perforant path ipsilateral to the lesion side. From these data we conclude that, following a lesioning of the entorhinal cortex, the loss of glutamatergic synapses in the terminal field of the perforant path resulted in a strong downregulation of glutamate transporters in astrocytes. The decrease of synaptically released glutamate or of other neuronal factors could be involved in this downregulation. [source]


Estradiol enhances long term potentiation in hippocampal slices from aged apoE4-TR mice

HIPPOCAMPUS, Issue 12 2007
Sung Hwan Yun
Abstract Hormone replacement therapy to treat or prevent Alzheimer Disease (AD) in postmenopausal women is controversial because it may pose other health risks such as cancer and thromboembolism. ApoE status is thought to influence the nootropic efficacy of hormone therapy, but findings are neither consistent nor well understood. We used a known in vitro memory model (long-term potentiation, LTP) in aged (24,27 month) female targeted replacement mice expressing human apoE3 or E4 to compare the effects of exogenous estradiol. Recording medial perforant path evoked field potentials in dentate gyrus of hippocampal slices, we found that both strains exhibited comparable basal synaptic transmission as assessed by input/output functions and paired pulse depression, and that these measures were not affected by estradiol. Vehicle-treated groups from both strains showed comparable LTP. Estradiol had no effect on LTP in apoE3-TR, but selectively increased LTP magnitude in apoE4-TR. The estradiol induced enhancement of LTP in aged female apoE4-TR is consistent with recent clinical observations that estrogen replacement decreases AD risk in some women with apoE4. Elucidating the mechanism of this selective enhancement may lead to more informed treatment decisions as well as to the development of safer alternatives to hormone therapy. © 2007 Wiley-Liss, Inc. [source]


The immunosuppressant mycophenolate mofetil improves preservation of the perforant path in organotypic hippocampal slice cultures: A retrograde tracing study

HIPPOCAMPUS, Issue 5 2006
Tilman M. Oest
Abstract Previous studies with excitotoxically lesioned organotypic hippocampal slice cultures (OHSC) have revealed that the immunosuppressant mycophenolate mofetil (MMF) inhibits microglial activation and suppresses neuronal injury in the dentate gyrus. We here investigate whether MMF also has beneficial effects on axon survival in a long-range projection, the perforant path. Complex OHSC including the entorhinal cortex were obtained from Wistar rats (p8); the plane of section ensuring that perforant path integrity was preserved. These preparations were cultured for 9 days in vitro with or without MMF (100 ,g/ml). After fixation, the perforant path was retrogradely labeled by application of the fluorescent dye DiI (1,1,-dioctadecyl-3,3,3,,3,-tetramethylindo-carbocyanine) in the hilus of the dentate gyrus, and neuronal perikarya were immunohistochemically stained by the neuron-specific marker NeuN. Analysis of DiI-labeled and NeuN-stained OHSC by confocal laser scanning microscopy revealed double-labeled neurons in the entorhinal cortex, which projected to the dentate gyrus via the perforant path. Quantitative analysis showed that the number of these double-labeled neurons was 19-fold higher in OHSC treated with MMF than in control cultures (P < 0.05). Our findings indicate that MMF treatment improves preservation of the perforant path and encourage further studies on development and regeneration of long-range projections under the influence of immunosuppressants. © 2006 Wiley-Liss, Inc. [source]


Distribution and morphology of serotonin-immunoreactive axons in the hippocampal region of the New Zealand white rabbit.

HIPPOCAMPUS, Issue 1 2003

Abstract This study provides a detailed light microscopic description of the morphology and distribution of immunohistochemically stained serotonergic axons in the hippocampal region of the New Zealand white rabbit. The serotonergic axons were segregated morphologically into three types: beaded fibers, fine fibers, and stem-axons, respectively. Beaded fibers were thin serotonergic axons with large varicosities, whereas thin axons with small fusiform or granular varicosities were called fine fibers. Finally, thick straight non-varicose axons were called stem-axons. Beaded fibers often formed large conglomerates with numerous boutons (pericellular arrays) in close apposition to the cell-rich layers in the hippocampal region, e.g., the granular and hilar cell layers of the dentate area and the pyramidal cell layer ventrally in CA3. The pericellular arrays in these layers were often encountered in relation to small calbindin-D28K -positive cells, as shown by immunohistochemical double staining for serotonin and calbindin-D28K. The beaded and fine serotonergic fibers displayed a specific innervation pattern in the hippocampal region and were encountered predominantly within the terminal field of the perforant path, e.g., the stratum moleculare hippocampi and the outer two-thirds of the dentate molecular layer. These fibers were also frequently seen in the deep part of the stratum oriens and the alveus, forming a dense plexus in relation to large multipolar calbindin-D28K -positive cells and their basal extensions. Stem-axons were primarily seen in the fimbria and alveus. This innervation pattern was present throughout the entire hippocampal formation, but there were considerable septotemporal differences in the density of the serotonergic innervation. A high density of innervation prevailed in the ventral/temporal part of the hippocampal formation, whereas the dorsal/septal part received only a moderate to weak serotonergic innervation. These results suggest that the serotonergic system could modulate the internal hippocampal circuitry by way of its innervation in the terminal field of the perforant path, the hilus fasciae dentatae, and ventrally in the zone closely apposed to the mossy fiber layer and the pyramidal cells of CA3. This modulation could be of a dual nature, mediated directly by single serotonergic fibers traversing the hippocampal layers or indirectly by the pericellular arrays and their close relation to the calbindin-D28K -positive cells. The marked septotemporal differences in innervation density point toward a difference between the ventral and dorsal parts of the hippocampal formation with respect to serotonergic function and need for serotonergic modulation. Hippocampus 2003;13:21,37. © 2003 Wiley-Liss, Inc. [source]


Impaired postnatal development of hippocampal neurons and axon projections in the Emx2,/, mutants

JOURNAL OF NEUROCHEMISTRY, Issue 5 2002
Nicolai E. Savaskan
Abstract The specification and innervation of cerebral subregions is a complex layer-specific process, primed by region-specific transcription factor expression and axonal guidance cues. In Emx2,/, mice, the hippocampus fails to form a normal dentate gyrus as well as the normal layering of principal neurons in the hippocampus proper. Here, we analyzed the late embryonic and postnatal development of the hippocampal formation and its axonal projections in mice lacking Emx2 expression in vitro. As these mutants die perinatally, we used slice cultures of Emx2 mutant hippocampus to circumvent this problem. In late embryonic Emx2,/, cultivated hippocampi, both the perforant path as well as the distribution of calretinin-positive cells are affected. Traced entorhinal afferents in co-cultures with hippocampus from embryonic Emx2,/, mice terminate diffusely in the prospective dentate gyrus in contrast to the layer-specific termination of co-cultures from wild-type littermates. In addition, in brain slice cultures from null mutants the presumptive dentate gyrus failed to develop its normal cytoarchitecture and mature dentate granule cells, including the lack of their mossy fiber projection. Our data indicate that Emx2 is essential for the terminal differentiation of granular cells and the correct formation of extrinsic and intrinsic hippocampal connections. [source]


Coincidence detection of convergent perforant path and mossy fibre inputs by CA3 interneurons

THE JOURNAL OF PHYSIOLOGY, Issue 11 2008
Eduardo Calixto
We performed whole-cell recordings from CA3 s. radiatum (R) and s. lacunosum-moleculare (L-M) interneurons in hippocampal slices to examine the temporal aspects of summation of converging perforant path (PP) and mossy fibre (MF) inputs. PP EPSPs were evoked from the s. lacunosum-moleculare in area CA1. MF EPSPs were evoked from the medial extent of the suprapyramidal blade of the dentate gyrus. Summation was strongly supralinear when examining PP EPSP with MF EPSP in a heterosynaptic pair at the 10 ms ISI, and linear to sublinear at longer ISIs. This pattern of nonlinearities suggests that R and L-M interneurons act as coincidence detectors for input from PP and MF. Summation at all ISIs was linear in voltage clamp mode demonstrating that nonlinearities were generated by postsynaptic voltage-dependent conductances. Supralinearity was not detected when the first EPSP in the pair was replaced by a simulated EPSP injected into the soma, suggesting that the conductances underlying the EPSP boosting were located in distal dendrites. Supralinearity was selectively eliminated with either Ni2+ (30 ,m), mibefradil (10 ,m) or nimodipine (15 ,m), but was unaffected by QX-314. This pharmacological profile indicates that supralinearity is due to recruitment of dendritic T-type Ca2+channels by the first subthreshold EPSP in the pair. Results with the hyperpolarization-activated (Ih) channel blocker ZD 7288 (50 ,m) revealed that Ih restricted the time course of supralinearity for coincidently summed EPSPs, and promoted linear to sublinear summation for asynchronous EPSPs. We conclude that coincidence detection results from the counterbalanced activation of T-type Ca2+ channels and inactivation of Ih. [source]


Anticonvulsant and antiepileptic actions of 2-deoxy-D-glucose in epilepsy models,

ANNALS OF NEUROLOGY, Issue 4 2009
Carl E. Stafstrom MD
Objective Conventional anticonvulsants reduce neuronal excitability through effects on ion channels and synaptic function. Anticonvulsant mechanisms of the ketogenic diet remain incompletely understood. Because carbohydrates are restricted in patients on the ketogenic diet, we evaluated the effects of limiting carbohydrate availability by reducing glycolysis using the glycolytic inhibitor 2-deoxy-D-glucose (2DG) in experimental models of seizures and epilepsy. Methods Acute anticonvulsant actions of 2DG were assessed in vitro in rat hippocampal slices perfused with 7.5mM [K+]o, 4-aminopyridine, or bicuculline, and in vivo against seizures evoked by 6Hz stimulation in mice, audiogenic stimulation in Fring's mice, and maximal electroshock and subcutaneous pentylenetetrazol (Metrazol) in rats. Chronic antiepileptic effects of 2DG were evaluated in rats kindled from olfactory bulb or perforant path. Results 2DG (10mM) reduced interictal epileptiform bursts induced by 7.5mM [K+]o, 4-aminopyridine, and bicuculline, and electrographic seizures induced by high [K+]o in CA3 of hippocampus. 2DG reduced seizures evoked by 6Hz stimulation in mice (effective dose [ED]50 = 79.7mg/kg) and audiogenic stimulation in Fring's mice (ED50 = 206.4mg/kg). 2DG exerted chronic antiepileptic action by increasing afterdischarge thresholds in perforant path (but not olfactory bulb) kindling and caused a twofold slowing in progression of kindled seizures at both stimulation sites. 2DG did not protect against maximal electroshock or Metrazol seizures. Interpretation The glycolytic inhibitor 2DG exerts acute anticonvulsant and chronic antiepileptic actions, and has a novel pattern of effectiveness in preclinical screening models. These results identify metabolic regulation as a potential therapeutic target for seizure suppression and modification of epileptogenesis. Ann Neurol 2009;65:435,448. [source]