Home About us Contact | |||
Perovskites
Kinds of Perovskites Terms modified by Perovskites Selected AbstractsSc3AlN , A New PerovskiteEUROPEAN JOURNAL OF INORGANIC CHEMISTRY, Issue 8 2008Carina Höglund Abstract Sc3AlN with perovskite structure has been synthesized as the first ternary phase in the Sc,Al,N system. Magnetron sputter epitaxy at 650 °C was used to grow single-crystal, stoichiometric Sc3AlN(111) thin films onto MgO(111) substrates with ScN(111) seed layers as shown by elastic recoil detection analysis, X-ray diffraction, and transmission electron microscopy. The Sc3AlN phase has a lattice parameter of 4.40 Å, which is in good agreement with the theoretically predicted 4.42 Å. Comparisons of total formation energies show that Sc3AlN is thermodynamically stable with respect to all known binary compounds. Sc3AlN(111) films of 1.75 µm thickness exhibit a nanoindentation hardness of 14.2 GPa, an elastic modulus of 249 GPa, and a room-temperature electrical resistivity of 41.2 µ, cm. (© Wiley-VCH Verlag GmbH & Co. KGaA, 69451 Weinheim, Germany, 2008) [source] A-Site and B-Site Order in (Na1/2La1/2)(Mg1/3Nb2/3)O3 PerovskiteJOURNAL OF THE AMERICAN CERAMIC SOCIETY, Issue 5 2004Rachel Tarvin (Na1/2La1/2)(Mg1/3Nb2/3)O3 undergoes a series of phase transitions that involve cation order on the A- and B-sites of the parent perovskite structure. At high temperatures both sites contain a random distribution of cations; below 1275°C a ,111, layering of Mg and Nb leads to the formation of a 1:2 ordered structure with a monoclinic supercell. A second transition was observed at 925°C, where the Na and La cations order onto alternate A-site positions along the ,001, direction of the parent subcell. By quenching samples from above 1275°C to preserve the disorder on the B-site, a fourth variant of this compound was obtained by inducing A-site order through a subsequent anneal at 900°C. Although the changes in structure do not produce significant alterations in the relative permittivity (,r, 35), they do have a significant effect on the value of the temperature coefficient of the capacitance. [source] Relationship between the Bond Valence and the Temperature Coefficient of the Resonant Frequency in the Complex Perovskite (Pb1,xCax)[Fe0.5(Nb1,yTay)0.5]O3JOURNAL OF THE AMERICAN CERAMIC SOCIETY, Issue 1 2001Heung Soo Park The temperature coefficient of the resonant frequency (TCF) of complex perovskite (Pb1,xCax)[Fe0.5(Nb1,yTay)0.5]O3 ceramics (x= 0.5, 0.55; 0.0 ,y, 1.0) was investigated, relative to the bond valence of the A- and B-site ions in the ABO3 perovskite structure (such as the barium-, strontium-, and calcium-based complex perovskites). The TCF of these complex perovskite compounds varied with the bond valence of the A- and B-sites and the tolerance factor (t) in the perovskite structure. In the tilted region (t < 1.0), the tilting of the oxygen octahedra increased and the TCF decreased, because of the increased bond valence of the B-site. Also, the dependence of TCF on the bond valence of the A-site was similar to its dependence on t. [source] ChemInform Abstract: Magnetoelectric Perovskite (Bi0.5Pb0.5) (Fe0.5Zr0.5)O3: Preparation Structural and Magnetic Properties.CHEMINFORM, Issue 15 2010S. A. Ivanov Abstract ChemInform is a weekly Abstracting Service, delivering concise information at a glance that was extracted from about 100 leading journals. To access a ChemInform Abstract of an article which was published elsewhere, please select a "Full Text" option. The original article is trackable via the "References" option. [source] ChemInform Abstract: Magnetic Structure of the Inverse Perovskite (Ce3N)In.CHEMINFORM, Issue 10 2009Frank Gaebler Abstract ChemInform is a weekly Abstracting Service, delivering concise information at a glance that was extracted from about 200 leading journals. To access a ChemInform Abstract of an article which was published elsewhere, please select a "Full Text" option. The original article is trackable via the "References" option. [source] ChemInform Abstract: Positive and Negative Magnetodielectric Effects in A-Site Ordered (BiMn3)Mn4O12 Perovskite.CHEMINFORM, Issue 7 2009Naoki Imamura Abstract ChemInform is a weekly Abstracting Service, delivering concise information at a glance that was extracted from about 200 leading journals. To access a ChemInform Abstract of an article which was published elsewhere, please select a "Full Text" option. The original article is trackable via the "References" option. [source] ChemInform Abstract: Solid Solutions of Perovskite in the LaO1.5,BaO,ScO1.5,ZrO2 System at 1600 °CCHEMINFORM, Issue 4 2009Koichi Suehiro Abstract ChemInform is a weekly Abstracting Service, delivering concise information at a glance that was extracted from about 200 leading journals. To access a ChemInform Abstract of an article which was published elsewhere, please select a "Full Text" option. The original article is trackable via the "References" option. [source] ChemInform Abstract: Structural and Electrical Characterization of the Novel SrCo0.9Sb0.1O3-, Perovskite: Evaluation as a Solid Oxide Fuel Cell Cathode Material.CHEMINFORM, Issue 10 2008A. Aguadero Abstract ChemInform is a weekly Abstracting Service, delivering concise information at a glance that was extracted from about 200 leading journals. To access a ChemInform Abstract of an article which was published elsewhere, please select a "Full Text" option. The original article is trackable via the "References" option. [source] Peculiar Magnetic Behavior of the TbCu3Mn4O12 Complex Perovskite.CHEMINFORM, Issue 50 2005J. Sanchez-Benitez Abstract For Abstract see ChemInform Abstract in Full Text. [source] Crystal growth features and properties of layered rare earth and barium cobaltatesCRYSTAL RESEARCH AND TECHNOLOGY, Issue 4-5 2005G. L. Bychkov Abstract High quality single crystals of LnBaCo2O5+, (0 < , < 1) (Ln = Pr, Eu, Gd, Tb, Dy) with rectangular shape and average dimensions 5 mm × 5 mm × 1 mm were grown for the first time from overstoichiometric flux melt. The data on the primary crystallization field of most cobaltate phases, which appear in parts of corresponding Gibbs triangles in the range 1373 , 1523 K are discussed. Bulk single crystals of new phases HoBaCo4O7 up to 300 mm3, YBaCo4O7 and TbBaCo4O7 up to 10 mm3 in volume were grown first. A solution of these compounds structure has been found in the space group P63mc. For the Ln = Pr, Gd, Sm, Tb, Dy, Ho based systems under the liquidus line there are several other new cobaltate phases of both perovskite, and hexagonal crystal structure. Stability of the double perovskite phase and temperature of the antiferromagnetic , ferromagnetic phase transition in relation to the radius of rare earth ions are compared. The data on the exact analysis of chemical composition, including EDX and iodometric titration, as well as results on magnetic susceptibility of EuBaCo1- xAlxO5+, (0 < x < 0.3) are discussed. (© 2005 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim) [source] WDX Studies on Ceramic Diffusion Barrier Layers of Metal Supported SOECsFUEL CELLS, Issue 6 2009D. Wiedenmann Abstract Solid oxide electrolyser cells (SOECs) have great potential for efficient and economical production of hydrogen fuel. Element diffusion between the Ni-cermet electrode and the metal substrate of metal supported cells (MSC) is a known problem in fuel cell and electrolysis technology. In order to hinder this unintentional mass transport, different ceramic diffusion barrier layers (DBLs) are included in recent cell design concepts. This paper is based on wavelength dispersive X-ray fluorescence investigations of different SOEC and focuses on Fe, Cr and Ni diffusion between the metal grains of the cathode and the metal substrate. Due to the low detection limits and therefore high analytical sensitivity, wavelength dispersive electron probe microanalysis (EPMA) provides a precise method to determine element distribution, absolute element concentration and changes between the reference material and aged cells on a microstructural level by element mappings and concentration profiles. The results of this work show considerable concentration gradients in the metal grains caused by mass exchange during cell operation. Diffusion can be inhibited significantly by integrating different ceramic DBLs of doped LaCrO3 -type or doped LaMnO3 -type perovskite, either by vacuum plasma spraying (VPS) or physical vapour deposition technique (PVD). [source] Subducted slabs and lateral viscosity variations: effects on the long-wavelength geoidGEOPHYSICAL JOURNAL INTERNATIONAL, Issue 2 2009Nicola Tosi SUMMARY The characteristic broad local maxima exhibited by the long-wavelength geoid over subduction zones are investigated with a numerical model of mantle flow. In a spherical axisymmetric geometry, a synthetic model of buoyancy driven subduction is used to test the effects on the geoid caused by the depth of penetration of the lithosphere into the mantle, by the viscosity stratification and by lateral viscosity variations (LVV) in the lithosphere, upper and lower mantle. The presence of anomalous slab density in the lower mantle guarantees geoid amplitudes comparable with the observations, favouring the picture of slabs that penetrate the transition zone and sink into the deep mantle. The viscosity of the lower mantle controls the long-wavelength geoid to the first order, ensuring a clear positive signal when it is at least 30-times greater than the upper-mantle viscosity. The presence of LVV in the lithosphere, in the form of weak plate margins, helps to increase the contribution of the surface topography, causing a pronounced reduction of the geoid. Localized LVV associated with the cold slab play a secondary role if they are in the upper mantle. On the other hand, highly viscous slabs in the lower mantle exert a large influence on the geoid. They cause its amplitude to increase dramatically, way beyond the values typically observed over subduction zones. Long-wavelength flow becomes less vigorous as the slab viscosity increases. Deformation in the upper mantle becomes more localized and power is transferred to short wavelengths, causing the long-wavelength surface topography to diminish and the total geoid to increase. Slabs may be then weakened in the lower mantle or retain their high viscosity while other mechanisms act to lower the geoid. It is shown that a phase change from perovskite to post-perovskite above the core,mantle boundary can cause the geoid to reduce significantly, thereby helping to reconcile models and observations. [source] Compositional constraints on the equation of state and thermal properties of the lower mantleGEOPHYSICAL JOURNAL INTERNATIONAL, Issue 1 2001Frank D. Stacey SUMMARY By extrapolating the lower mantle equation of state (EoS) to P=0, T=290 K, we determine the EoS parameters that are compatible with a mixture of (Mg, Fe)SiO3 perovskite (with a small admixture of Al2O3), (Mg, Fe)O magnesiowüstite and CaSiO3 perovskite in arbitrary proportions and with arbitrary Fe/(Fe+Mg) ratio. The parameters fitted are density, ,, adiabatic incompressibility, KS, and its pressure derivative, K,S,(,KS/,P)S. The first stage is adiabatic extrapolation to P=0, T=T0, that is, to the foot of the lower mantle adiabat, at which K,0(T0) is allowed to have any value between 3.8 and 4.6, and 1500 K,T0,2000 K. It is important to use an equation for which the lower mantle fitting does not prescribe K,0(T0) and this rules out the third-order Birch theory, which gives a seriously wrong value. The further extrapolation to 290 K at P=0 uses thermodynamic relationships with maximum generality, allowing all of the following thermoelastic parameters to be arbitrary functions of temperature: K;,; Grüneisen parameter, ,;q=(, ln ,/, ln V)T, where V is volume; volume coefficient of thermal expansion, ,; adiabatic Anderson,Grüneisen parameter, ,S=(1/,) (, ln KS/,T)P; and the mixed P, T derivative (,K,S/,T)P. The heat capacity at constant volume, CV, is assumed to follow the Debye function, so , is controlled by that. The temperature dependences of the dimensionless parameters ,, q and ,S at P=0 are slight. We find , to be precisely independent of T at constant V. The parameter dK,0/dT increases strongly with T, as well as with the assumed value of K,0(T0), where K,0 is K,S at P=0. The fitting disallows significant parameter ranges. In particular, we find solutions only if K,0(T0),4.2 and the 290 K value of K,0 for Mg perovskite is less than 3.8. Conclusions about composition are less secure, partly because of doubt about individual mineral properties. The volume of magnesiowüstite is found to be between 10 and 25 per cent for respective T0 values of 2000 and 1500 K, but the Ca-perovskite volume is no more than 6 per cent and has little influence on the other conclusions. The resulting overall Fe/(Fe+Mg) ratio is 0.12 to 0.15. Although this ratio is higher than expected for a pyrolite composition, the ratio depends critically on the assumed mineral densities; some adjustment of the mineral mix may need to be considered. [source] Structural Transformations during Formation of Quasi-Amorphous BaTiO3,ADVANCED FUNCTIONAL MATERIALS, Issue 7 2007D. Ehre Abstract A model of structural transformations of amorphous into quasi-amorphous BaTiO3 is suggested. The model is based on previously published data and on X-ray photoelectron spectroscopy data presented in the current report. Both amorphous and quasi-amorphous phases of BaTiO3 are made up of a network of slightly distorted TiO6 octahedra connected in three different ways: by apices (akin to perovskite), edges, and faces. Ba ions in these phases are located in the voids between the octahedra, which is a nonperovskite environment. These data also suggest that Ba ions compensate electrical-charge imbalance incurred by randomly connected octahedra and, thereby, stabilize the TiO6 network. Upon heating, the edge-to-edge and face-to-face connections between TiO6 octahedra are severed and then reconnected via apices. Severing the connections between TiO6 octahedra requires a volume increase, suppression of which keeps some of the edge-to-edge and face-to-face connections intact. Transformation of the amorphous thin films into the quasi-amorphous phase occurs during pulling through a steep temperature gradient. During this process, the volume increase is inhomogeneous and causes both highly anisotropic strain and a strain gradient. The strain gradient favors breaking those connections, which aligns the distorted TiO6 octahedra along the direction of the gradient. As a result, the structure becomes not only anisotropic and non-centrosymmetric, but also acquires macroscopic polarization. Other compounds may also form a quasi-amorphous phase, providing that they satisfy the set of conditions derived from the suggested model. [source] Epitaxial Solution Deposition of YBa2Cu3O7,, -Coated ConductorsINTERNATIONAL JOURNAL OF APPLIED CERAMIC TECHNOLOGY, Issue 1 2005P. G. Clem A variety of solution deposition routes have been reported for processing complex perovskite-based materials such as ferroelectric oxides and conductive electrode oxides, due to ease of incorporating multiple elements, control of chemical stoichiometry, and feasibility for large area deposition. Here, we report an extension of these methods toward long length, epitaxial film solution deposition routes to enable biaxially oriented YBa2Cu3O7,, (YBCO)-coated conductors for superconducting transmission wires. Recent results are presented detailing an all-solution deposition approach to YBCO-coated conductors with critical current densities Jc (77 K)>1 MA/cm2 on rolling-assisted, biaxially textured, (200)-oriented Ni,W alloy tapes. Solution-deposition methods such as this approach and those of other research groups appear to have promise to compete with vapor phase methods for superconductor electrical properties, with potential advantages for large area deposition and low cost/kA·m of wire. [source] Reversibility of the Perovskite-to-Fluorite Phase Transformation in Lead-Based Thin and Ultrathin Films,ADVANCED MATERIALS, Issue 8 2008Geoff L. Brennecka As film thicknesses decrease below 50 nm, control of cation stoichiometry in Pb-based dielectrics becomes increasingly difficult, a problem that is exacerbated by interaction with technologically important Pt bottom electrodes. Post-crystallization annealing in a Pb-rich atmosphere is shown to be a general technique to reversibly convert low-permittivity Pb-deficient fluorite into ferroelectric high-permittivity stoichiometric perovskite with outstanding dielectric properties (see figure). [source] Phase relations in the Ba,Sr,Co,Fe,O system at 1273,K in airJOURNAL OF APPLIED CRYSTALLOGRAPHY, Issue 2 2009Zhèn Yáng Selected compositions of the Ba,Sr,Co,Fe,O system were synthesized from powders by the solid-state reaction method. Samples were equilibrated at 1273,K for 36,000,s in air. The resulting powders were characterized by X-ray diffraction (XRD) at room temperature and by high-temperature in situ XRD. The phases present in the BaxSr1,xCoyFe1,yO3,, system are outlined for 1273,K in air. For most of the quaternary compositions, the cubic perovskite is formed, except for the compositions with x = 1 (excluding y = 0.4), y = 1 and x, y = 0.8, where the phases mainly show hexagonal distortions, and x, y = 0, for which a predominant cubic phase is mixed with other phases. [source] Performance of a new furnace for high-resolution synchrotron powder diffraction up to 1900,K: application to determine electron density distribution of the cubic CaTiO3 perovskite at 1674,KJOURNAL OF APPLIED CRYSTALLOGRAPHY, Issue 5 2004Masatomo Yashima Accurate crystal structure analysis at high temperatures is an important challenge in science and technology. A new electric furnace for the measurement of high-resolution (,d/d = 0.03%) synchrotron radiation powder diffraction profiles from materials at high temperatures (up to 1900,K in air) has been designed and fabricated. This furnace consists of a ceramic refractory with MoSi2 heaters, an aluminium body cooled by flowing water, and a sample stage with a spinner and a controller for sample-height adjustment. In situ synchrotron powder diffraction measurement for a calcium titanate perovskite specimen at 1674,K has been performed using the furnace at beamline 3A of the Photon Factory. The electron density distribution of the cubic perovskite at 1674,K was successfully obtained using a combination of Rietveld refinement, the maximum-entropy method (MEM) and MEM-based pattern-fitting techniques. The Ti atoms exhibit covalent bonding with the O atoms in the cubic CaTiO3 perovskite at this temperature, while the Ca atoms are ionic. These results indicate that the new furnace yields high-quality data for accurate crystal structure analysis. [source] Thermal expansion and atomic displacement parameters of cubic KMgF3 perovskite determined by high-resolution neutron powder diffractionJOURNAL OF APPLIED CRYSTALLOGRAPHY, Issue 3 2002I. G. Wood The structure of KMgF3 has been determined by high-resolution neutron powder diffraction at 4.2,K, room temperature and at 10,K intervals from 373,K to 1223,K. The material remains cubic at all temperatures. The average volumetric coefficient of thermal expansion in the range 373,1223,K was found to be 7.11,(3) × 10,5,K,1. For temperatures between 4.2 and 1223,K, a second-order Grüneisen approximation to the zero-pressure equation of state, with the internal energy calculated via a Debye model, was found to fit well, with the following parameters: ,D = 536,(9),K, Vo = 62.876,(6),Å3, = 6.5,(1) and (VoKo/,,) = 3.40,(2) × 10,18,J, where ,D is the Debye temperature, Vo is the volume at T = 0, is the first derivative with respect to pressure of the incompressibility (Ko) and ,, is a Grüneisen parameter. The atomic displacement parameters were found to increase smoothly with T and could be fitted using Debye models with ,D in the range 305,581,K. At 1223,K, the displacement of the F ions was found to be much less anisotropic than that in NaMgF3 at this temperature. [source] Contribution of electron precession to the study of perovskites displaying small symmetry departures from the ideal cubic ABO3 perovskite: applications to the LaGaO3 and LSGM perovskitesJOURNAL OF MICROSCOPY, Issue 1 2008J.-P. MORNIROLI Summary Electron microscopy and electron diffraction are well adapted to the study of the fine-grained, faulted pure and doped LaGaO3 and LSGM perovskites in which the latter is useful for fuel cell components. Because these perovskites display small symmetry departures from an ideal cubic ABO3 perovskite, many conventional electron diffraction patterns look similar and cannot be indexed without ambiguity. Electron precession can easily overcome this difficulty mainly because the intensity of the diffracted beams on the precession patterns is integrated over a large deviation domain around the exact Bragg condition. This integrated intensity can be trusted and taken into account to identify the ,ideal' symmetry of the precession patterns (the symmetry which takes into account both the position and the intensity of the diffracted beams). In the present case of the LaGaO3 and LSGM perovskites, the determination of the ,ideal' symmetry of the precession patterns is based on the observation of weak ,superlattice' reflections typical of the symmetry departures. It allows an easy and sure identification of any zone axes as well as the correct attribution of hkl indices to each of the diffracted beams. Examples of applications of this analysis to the characterizations of twins and to the identification of the space groups are given. This contribution of electron precession can be easily extended to any other perovskites or to any crystals displaying small symmetry departures. [source] Effect of La Doping on the Phase Conversion, Microstructure Change, and Electrical Properties of Bi2Fe4O9 CeramicsJOURNAL OF THE AMERICAN CERAMIC SOCIETY, Issue 11 2009Ju Hong Miao Undoped and La-doped Bi2Fe4O9 ceramics were synthesized using a soft chemical method. It is observed that in calcining La-doped Bi2Fe4O9, Bi(La)FeO3 phase rather than Bi2,xLaxFe4O9 gradually increases with increasing La doping content. The phase conversion from mullite-type structure of Bi2Fe4O9 to rhombohedrally distorted perovskite one of Bi(La)FeO3 with increasing La doping content indicates that La doping can stabilize the structure of BiFeO3. This is further evidenced that Bi2Fe4O9 can be directly converted to Bi(La)FeO3 by heating the mixtures of nominal composition of Bi2Fe4O9/xLa2O3. Furthermore, the microstructure changes and the room temperature hysteresis loops and leakage current for Bi2,xLaxFe4O9 with x=0 and 0.02 were characterized. [source] GC-MS and 13C NMR Investigation of Lead Zirconate Titanate Precursor Sols for Fiber PreparationJOURNAL OF THE AMERICAN CERAMIC SOCIETY, Issue 2 2007Mei Zhang Different macroscopic properties of PZT fibers have been obtained when using acetic acid and methacrylic acid to modify the PZT precursor. In order to clarify the role of the acids the molecular structure of the acidified PZT precursors was investigated and compared by gas chromatography-mass spectrometry, Fourier transform infrared, 13C nuclear magnetic resonance (NMR) spectroscopy (solution and solid state 13C NMR) and the reason for obtaining long PZT fibers is discussed. The results indicate that when methacrylic acid was used, long gel and ceramic fibers have been obtained because strongly co-ordinating carboxylate groups of methacrylic acid were formed. Linear chains, like those of methacrylic acid propyl ester and methacrylic acetate, have been formed in the PZT precursor sols. In addition, after heat treatment the polymer decomposed quickly so that pure perovskite could be obtained at low temperature in the PZT fibers. When acetic acid was used short fibers were obtained. Acetic acid may act as chelate agent to form oxo acetate in the precursors; this oxo acetate nature also resulted in PZT fibers drawing. However, the longest gel and ceramic fibers have been prepared from precursors with methacrylic acid. [source] Cation Ordering and Dielectric Characteristics in Barium Zinc NiobateJOURNAL OF THE AMERICAN CERAMIC SOCIETY, Issue 2 2007Chun-Te Lee Barium zinc niobate (Ba(Zn1/3Nb2/3)O3) (BZN) complex perovskite has been reported to have special microwave dielectric properties with close relation of its ordered structure. This study investigated the effect of calcination on the evolution of ordered structure and on quality factor with Raman spectroscopy, X-ray diffractometry, and transmission electron microscopy. The results revealed that single calcination at a lower temperature inhibited the growth of the ordered domain during sintering. In contrast, the 1:2-ordered domain in double-calcined BZN powder grew significantly with a higher sintering temperature and a longer soaking time. It is attributed that double calcination caused a higher degree of 1:2 ordering and better homogeneity. At the same time, the quality factor of the sintered ceramic body was highly promoted when using double-calcined powder. A close relation of the quality factor with the size of ordered domain, the degree of 1:2 ordering, and the relative density of BZN ceramics was presented. [source] From Chelating Precursor to Perovskite Oxides and Hollow Fiber MembranesJOURNAL OF THE AMERICAN CERAMIC SOCIETY, Issue 1 2007S. Liu Perovskite Ba0.5Sr0.5Co0.8Fe0.2O3-, (BSCF) is a promising mixed-conducting ceramic membrane material in addition to being a good electrode catalyst for solid oxide fuel cells. In this study, BSCF powder was synthesized via a chelated water-soluble complex method at relatively low temperatures. The combined ethylenediaminetetraacetic acid and citric acid was used for the synthesis of a complex-based precursor, followed by thermal decomposition of the precursor at high temperatures. Thermal behavior, crystal phases, and structures of the prepared powders were characterized by thermogravimetric analysis/differential scanning calorimetry, XRD, and scanning electron microscopic (SEM) techniques, respectively. Pure and single-phase perovskite could be obtained after sintering at a temperature higher than 800°C for 5 h. The soft precursor powder synthesized at lower temperatures, i.e., 600°C, is water insoluble and more appropriate for use as a membrane material to prepare gas-tight tubular or hollow fiber ceramic membranes. By contrast, the hollow fibers prepared via the traditional techniques where the perovskite powder is used as the starting membrane materials display gas leakage. The fibers were characterized by SEM, XRD, and tested for air separation at ambient pressure and temperatures between 700° and 950°C. The oxygen flux measured in this work reached 3.90 mL·(min·cm2),1 and compares favorably with any experimental values reported in the open literature. [source] Neutron Powder Diffraction Study of a Phase Transition in La0.68(Ti0.95Al0.05)O3JOURNAL OF THE AMERICAN CERAMIC SOCIETY, Issue 12 2006Roushown Ali Crystal structures and structural changes of the compound La0.68(Ti0.95Al0.05)O3 have been studied using neutron powder diffraction data and the Rietveld method in the temperature range from 25° to 592°C. The Rietveld profile-fitting analyses of the neutron data and the synchrotron diffraction profile revealed that the crystal symmetry of the low-temperature phase of La0.68(Ti0.95Al0.05)O3 is orthorhombic Cmmm (2ap× 2ap× 2ap; p: pseudo-cubic perovskite). The unit-cell and structural parameters were successfully refined with the orthorhombic Cmmm for the intensity data measured at 25°, 182°, and 286°C, and with the tetragonal P4/mmm (ap×ap× 2ap) for intensity data obtained at 388° and 592°C. The P4/mmm -to- Cmmm phase transition was found to be induced by tilting of the (TiAl)O6 octahedron. The tilt angle decreased with increasing temperature, reaching 0° at the Cmmm,P4/mmm transition temperature. [source] Mechano-Synthesis of Lead,Magnesium,Niobate CeramicsJOURNAL OF THE AMERICAN CERAMIC SOCIETY, Issue 10 2006Danjela Kuscer The synthesis of Pb(Mg1/3Nb2/3)O3 (PMN) with high-energy milling was studied by X-ray powder diffraction (XRD) using the Rietveld-refinement method. The results are discussed in terms of the qualitative and quantitative composition of the crystalline and amorphous phases as a function of milling time. The mechano-synthesis of PbO, Nb2O5, and MgO leads to the formation of perovskite PMN. In the initial stage of milling, particle size reduction and a high degree of amorphization were observed, together with the simultaneous formation of perovskite and pyrochlore-type structures. A mechanism for the formation of PMN by the mechano-synthesis route is proposed. [source] Aqueous Combustion Synthesis of Strontium-Doped Lanthanum Chromite CeramicsJOURNAL OF THE AMERICAN CERAMIC SOCIETY, Issue 7 2003Kishori Deshpande An aqueous combustion synthesis is used to produce powders of La0.8Sr0.2CrO3 perovskite. It is shown that interaction between chromium nitrate and glycine controls the process. In addition, it is suggested that glycine reacts with products of nitrate decomposition to yield an intermediate compound, which decomposes exothermically providing high-temperature conditions for complex oxide formation. It is remarkable that although reaction temperature is high (up to 800°C) and characteristic time is small (,1 s) for synthesis under the self-propagating high-temperature mode, the produced perovskites have high specific surface area (,40 m2/g) and well-defined crystalline structure. As a result, ceramics sintered by using these powders are dense (,96% of theoretical) and possess high electronic and low ionic conductivities, important for interconnect applications in solid oxide fuel cells. [source] Barium Holmium Zirconate, A New Perovskite Oxide: II, Synthesis as Nanoparticles through a Modified Combustion ProcessJOURNAL OF THE AMERICAN CERAMIC SOCIETY, Issue 10 2002Rajan Jose Nanoparticles of barium holmium zirconate, a new complex perovskite ceramic oxide, has been synthesized using a modified self-propagating combustion process. The solid combustion products obtained were characterized by X-ray diffraction (XRD), electron diffraction, differential thermal analysis, thermogravimetric analysis, infrared spectroscopy, particle size analysis, surface area determination, and high-resolution transmission electron microscopy. The XRD and electron diffraction studies have shown that the as-prepared powder is phase pure Ba2HoZrO5.5 and has a complex cubic perovskite (A2BB,O6) structure with a lattice constant a= 8.428 Å. The transmission electron microscopic investigation has shown that the particle size of the as-prepared powder was in the range 4,16 nm with a mean grain size of 8.2 nm. The nanoparticles of Ba2HoZrO5.5 obtained by the present method could be sintered to 98% theoretical density at 1500°C. [source] Thermodynamic and Structural Properties of Sodium Lithium Niobate Solid SolutionsJOURNAL OF THE AMERICAN CERAMIC SOCIETY, Issue 2 2002Irina Pozdnyakova Thermodynamics of the Na1,xLixNbO3 system is investigated by high-temperature drop-solution calorimetry in molten 3Na2O,4MoO3 solvent at 973 K. Standard molar enthalpies of formation are derived. The estimated heats of transition between hypothetical and stable structures, lithium niobate and perovskite for NaNbO3 and vice versa for LiNbO3 are ,6 kJ/mol and ,10 kJ/mol, respectively. X-ray diffraction studies at room temperature showed for 0 ,x, 0.14 there are three phases based on different ordering of the perovskite type lattice: orthorhombic with a quadrupled reduced perovskite cell at 0 ,x, 0.02, orthorhombic with a doubled reduced perovskite cell at 0.015 ,x, 0.14, and rhombohedral at 0.08 ,x, 0.13. There are two two-phase (morphotropic) regions with coexistence of the two orthorhombic phases at 0.015 ,x, 0.02 and with the second orthorhombic phase coexisting with the rhombohedral phase at 0.08 ,x, 0.13. A reproducible anomaly in specific heat at ,600 K, not reported previously, has been observed in pure NaNbO3. Heat-capacity measurements confirm a phase transition at 553 K for 0.07 ,x, 0.09. With increasing lithium concentration, a gradual disappearance of high-temperature phase transitions associated with tilting of oxygen octahedra has been observed. [source] Relationship between the Bond Valence and the Temperature Coefficient of the Resonant Frequency in the Complex Perovskite (Pb1,xCax)[Fe0.5(Nb1,yTay)0.5]O3JOURNAL OF THE AMERICAN CERAMIC SOCIETY, Issue 1 2001Heung Soo Park The temperature coefficient of the resonant frequency (TCF) of complex perovskite (Pb1,xCax)[Fe0.5(Nb1,yTay)0.5]O3 ceramics (x= 0.5, 0.55; 0.0 ,y, 1.0) was investigated, relative to the bond valence of the A- and B-site ions in the ABO3 perovskite structure (such as the barium-, strontium-, and calcium-based complex perovskites). The TCF of these complex perovskite compounds varied with the bond valence of the A- and B-sites and the tolerance factor (t) in the perovskite structure. In the tilted region (t < 1.0), the tilting of the oxygen octahedra increased and the TCF decreased, because of the increased bond valence of the B-site. Also, the dependence of TCF on the bond valence of the A-site was similar to its dependence on t. [source] |