Home About us Contact | |||
Peripheral Tolerance (peripheral + tolerance)
Selected AbstractsMast Cell Degranulation Breaks Peripheral ToleranceAMERICAN JOURNAL OF TRANSPLANTATION, Issue 10 2009V. C. De Vries Mast cells (MC) have been shown to mediate regulatory T-cell (Treg)-dependent, peripheral allograft tolerance in both skin and cardiac transplants. Furthermore, Treg have been implicated in mitigating IgE-mediated MC degranulation, establishing a dynamic, reciprocal relationship between MC and Treg in controlling inflammation. In an allograft tolerance model, it is now shown that intragraft or systemic MC degranulation results in the transient loss of Treg suppressor activities with the acute, T-cell dependent rejection of established, tolerant allografts. Upon degranulation, MC mediators can be found in the skin, Treg rapidly leave the graft, MC accumulate in the regional lymph node and the Treg are impaired in the expression of suppressor molecules. Such a dramatic reversal of Treg function and tissue distribution by MC degranulation underscores how allergy may causes the transient breakdown of peripheral tolerance and episodes of acute T-cell inflammation. [source] Partially circumventing peripheral tolerance for oncogene-specific prostate cancer immunotherapyTHE PROSTATE, Issue 7 2008Yilin C. Neeley Abstract BACKGROUND Failure of cancer immunotherapy is essentially due to immunological tolerance to tumor-associated antigens (TAAs), as these antigens are also expressed in healthy tissues. METHODS Here, we used transgenic adenocarcinoma of mouse prostate (TRAMP) mice, which develop lethal prostate cancer due to prostate-specific expression of SV40 T antigen (Tag), to evaluate effects of prostatic transformation on oncogene TAA-specific tolerance and to test the possibility of breaking such tolerance using a modified recombinant vaccinia virus. RESULTS We showed that Tag expression in TRAMP mice is uniquely extra-thymic, and levels of prostatic Tag expression positively correlate with malignant transformation of the prostate. Yet, young tumor-free TRAMP mice were tolerant to Tag antigen. We therefore attempted overcoming such peripheral oncogene-specific T cell tolerance through immunization with a vaccinia construct encoding Tag immunogenic epitopes. This vaccination modality showed that oncogene-specific tolerance was successfully overcome by effective in vivo priming of Tag-specific cytotoxic T cells (CTLs). However, this was restricted to young TRAMP mice. Tag-specific CTL from "tumor naïve" young TRAMP mice showed significant anti-tumor efficacy in vivo by eliminating established heterotopic prostate tumors and prolonging survival in SCID mice harboring Tag-expressing tumors. In contrast, older TRAMP mice with established prostate tumors exhibited oncogene-specific tolerance as evidenced by failure to generate Tag-specific CTL following Tag-specific immunization. CONCLUSIONS Peripheral tolerance can be overcome for effective anti-tumor therapy following oncogene-specific immunization. However, this ability to elicit oncogene-specific CTL is impeded in the tumor-bearing host, in the context of increased oncogene expression associated with tumor progression. Prostate 68: 715,727, 2008. © 2008 Wiley-Liss, Inc. [source] A role for innate immunity in type 1 diabetes?DIABETES/METABOLISM: RESEARCH AND REVIEWS, Issue 2 2003H. Beyan Abstract Two arms of the immune system, innate and adaptive immunity, differ in their mode of immune recognition. The innate immune system recognizes a few highly conserved structures on a broad range of microorganisms. On the other hand, recognition of self or autoreactivity is generally confined to the adaptive immune response. Whilst autoimmune features are relatively common, they should be distinguished from autoimmune disease that is infrequent. Type 1 diabetes is an immune-mediated disease due to the destruction of insulin secreting cells mediated by aggressive immune responses, including activation of the adaptive immune system following genetic and environmental interaction. Hypotheses for the cause of the immune dysfunction leading to type 1 diabetes include self-reactive T-cell clones that (1) escape deletion in the thymus, (2) escape from peripheral tolerance or (3) escape from homeostatic control with an alteration in the immune balance leading to autoimmunity. Evidence, outlined in this review, raises the possibility that changes in the innate immune system could lead to autoimmunity, by either priming or promoting aggressive adaptive immune responses. Hostile microorganisms are identified by genetically determined surface receptors on innate effector cells, thereby promoting clearance of these invaders. These innate effectors include a few relatively inflexible cell populations such as monocytes/macrophages, dendritic cells (DC), natural killer (NK) cells, natural killer T (NKT) cells and ,, T cells. Recent studies have identified abnormalities in some of these cells both in patients with type 1 diabetes and in those at risk of the disease. However, it remains unclear whether these abnormalities in innate effector cells predispose to autoimmune disease. If they were to do so, then modulation of the innate immune system could be of therapeutic value in preventing immune-mediated diseases such as type 1 diabetes. Copyright © 2002 John Wiley & Sons, Ltd. [source] CD4+CD25+ regulatory T,cells control the magnitude ofT-dependent humoral immune responses to exogenous antigensEUROPEAN JOURNAL OF IMMUNOLOGY, Issue 4 2006Fouad Eddahri Abstract CD4+CD25+ T,reg cells are critical for peripheral tolerance and prevention of autoimmunity. Here we show that CD4+CD25+ T,reg also regulate the magnitude of humoral responses against a panel of T-dependent antigens of foreign origin during both primary and secondary immune responses. Depletion of CD4+CD25+ T,cells leads to increased antigen-specific antibody production and affinity maturation but does not affect T-independent B,cell responses, suggesting that CD4+CD25+ T,reg exert a feedback mechanism on non-self antigen-specific antibody secretion by dampening the T,cell help for B,cell activation. Moreover, we show that CD4+CD25+ T,reg also suppress in vitro B,cell immunoglobulin production by inhibiting CD4+CD25, T,cell help delivery, and that blockade of TGF-, activity abolishes this suppression. [source] Peripheral T,cell tolerance occurs early during spontaneous prostate cancer development and can be rescued by dendritic cell immunizationEUROPEAN JOURNAL OF IMMUNOLOGY, Issue 1 2005Elena Degl'Innocenti Abstract In the tumor-prone transgenic adenocarcinoma mouse prostate (TRAMP) mouse model we followed the fate of the immune response against the SV40 large T,antigen (Tag) selectively expressed in the prostate epithelium during the endogenous transformation from normal cells to tumors. Young (5,7-week-old) male TRAMP mice, despite a dim and patchy expression of Tag overlapping foci of mouse prostate intraepithelial neoplasia, displayed a strong Tag-specific cytotoxic T,lymphocyte (CTL) response after an intradermal injection of peptide-pulsed dendritic cells (DC). This response was weaker than the one found in vaccinated wild-type littermates, and was characterized by a reduced frequency and avidity of Tag-specific CTL. Early DC vaccination also subverted the profound state of peripheral tolerance typically found in TRAMP mice older than 9,10,weeks. The DC-induced CTL response indeed was still detectable in TRAMP mice of 16,weeks, and was associated with histology evidence of reduced disease progression. Our findings suggest that tumor antigens are handled as self antigens, and peripheral tolerance is associated with in situ antigen overexpression and cancer progression. Our data also support a relevant role for DC-based vaccines in controlling the induction of peripheral tolerance to tumor antigens. [source] Molecular mechanisms of portal vein toleranceHEPATOLOGY RESEARCH, Issue 5 2008Tomohiro Watanabe The liver has been considered as a tolerogenic organ in the sense that favors the induction of peripheral tolerance. The administration of antigens (Ags) via the portal vein causes tolerance, which is termed portal vein tolerance and can explain the occurrence of tolerogenic responses in the liver. Here we discuss the fundamental mechanisms accounting for portal vein tolerance. Antigen-presenting cells (APCs) in the liver, especially dendritic cells and sinusoidal endothelial cells, have limited the ability to produce pro-inflammatory cytokines upon stimulation with endotoxin, an effect that could be due to the continuous exposure to bacterial Ags derived from intestinal microflora. Ag presentation by liver APCs results in T cell tolerance through clonal deletion and selection of regulatory T cells. Thus, APCs with immunosuppressive functions are associated with the achievement of portal vein tolerance via the induction of clonal deletion and generation of regulatory T cells. [source] CD4+ T-regulatory cells: toward therapy for human diseasesIMMUNOLOGICAL REVIEWS, Issue 1 2008Sarah E. Allan Summary T-regulatory cells (Tregs) have a fundamental role in the establishment and maintenance of peripheral tolerance. There is now compelling evidence that deficits in the numbers and/or function of different types of Tregs can lead to autoimmunity, allergy, and graft rejection, whereas an over-abundance of Tregs can inhibit anti-tumor and anti-pathogen immunity. Experimental models in mice have demonstrated that manipulating the numbers and/or function of Tregs can decrease pathology in a wide range of contexts, including transplantation, autoimmunity, and cancer, and it is widely assumed that similar approaches will be possible in humans. Research into how Tregs can be manipulated therapeutically in humans is most advanced for two main types of CD4+ Tregs: forkhead box protein 3 (FOXP3)+ Tregs and interleukin-10-producing type 1 Tregs (Tr1 cells). The aim of this review is to highlight current information on the characteristics of human FOXP3+ Tregs and Tr1 cells that make them an attractive therapeutic target. We discuss the progress and limitations that must be overcome to develop methods to enhance Tregs in vivo, expand or induce them in vitro for adoptive transfer, and/or inhibit their function in vivo. Although many technical and theoretical challenges remain, the next decade will see the first clinical trials testing whether Treg-based therapies are effective in humans. [source] Indoleamine 2,3-dioxygenase in T-cell tolerance and tumoral immune escapeIMMUNOLOGICAL REVIEWS, Issue 1 2008Jessica B. Katz Summary: Indoleamine 2, 3-dioxygenase (IDO) degrades the essential amino acid tryptophan in mammals, catalyzing the initial and rate-limiting step in the de novo biosynthesis nicotinamide adenine dinucleotide (NAD). Broad evidence implicates IDO and the tryptophan catabolic pathway in generation of immune tolerance to foreign antigens in tissue microenvironments. In particular, recent findings have established that IDO is overexpressed in both tumor cells and antigen-presenting cells in tumor-draining lymph nodes, where it promotes the establishment of peripheral immune tolerance to tumor antigens. In the normal physiologic state, IDO is important in creating an environment that limits damage to tissues due to an overactive immune system. However, by fostering immune suppression, IDO can facilitate the survival and growth of tumor cells expressing unique antigens that would be recognized normally as foreign. In preclinical studies, small-molecule inhibitors of IDO can reverse this mechanism of immunosuppression, complementing classical cytotoxic cancer chemotherapeutic agents' ability to trigger regression of treatment-resistant tumors. These results have encouraged the clinical translation of IDO inhibitors, the first of which entered phase I clinical trials in the fall of 2007. In this article, we survey the work defining IDO as an important mediator of peripheral tolerance, review evidence of IDO dysregulation in cancer cells, and provide an overview of the development of IDO inhibitors as a new immunoregulatory treatment modality for clinical trials. [source] Modulation of dendritic cell maturation and function with mono- and bifunctional small interfering RNAs targeting indoleamine 2,3-dioxygenaseIMMUNOLOGY, Issue 1pt2 2009Gro F. Flatekval Summary Antigen-presenting cells expressing indoleamine 2,3-dioxygenase (IDO) play a critical role in maintaining peripheral tolerance. Strategies to inhibit IDO gene expression and enhance antigen-presenting cell function might improve anti-tumour immunity. Here we have designed highly effective anti-IDO small interfering (si) RNAs that function at low concentrations. When delivered to human primary immune cells such as monocytes and dendritic cells (DCs), they totally inhibited IDO gene expression without impairing DC maturation and function. Depending on the design and chemical modifications, we show that it is possible to design either monofunctional siRNAs devoid of immunostimulation or bifunctional siRNAs with gene silencing and immunostimulatory activities. The latter are able to knockdown IDO expression and induce cytokine production through either endosomal Toll-like receptor 7/8 or cytoplasmic retinoid acid-inducible gene 1 helicase. Inhibition of IDO expression with both classes of siRNAs inhibited DC immunosuppressive function on T-cell proliferation. Immature monocyte-derived DCs that had been transfected with siRNA-bearing 5,-triphosphate activated T cells, indicating that, even in the absence of external stimuli such as tumour necrosis factor-,, those DCs were sufficiently mature to initiate T-cell activation. Collectively, our data highlight the potential therapeutic applications of this new generation of siRNAs in immunotherapy. [source] Interleukin-15 is not required for the induction or maintenance of orally induced peripheral toleranceIMMUNOLOGY, Issue 3 2004Owain R. Millington Summary Orally induced tolerance is a physiologically relevant form of peripheral tolerance, which is believed to be important for the prevention of pathological immune responses in the gut. Of several mechanisms proposed to mediate oral tolerance, one that has received much attention recently is the concept of regulatory CD4+ T cells. As recent studies have suggested that interleukin (IL)-15 may be important for the differentiation and maintenance of regulatory CD4+ T cells, we have examined the role of IL-15 in oral tolerance, using a soluble form of the IL-15 receptor (sIL-15R) which blocks the biological effects of IL-15 in vivo. Oral tolerance induced by feeding mice ovalbumin (OVA) in a low-dose regimen believed to induce regulatory T cell activity was not affected by the administration of sIL-15R during either the induction or maintenance phase of tolerance. Thus, oral tolerance does not involve an IL-15-dependent mechanism. [source] T-cell regulation of peripheral tolerance and immunity: the potential role for Notch signallingIMMUNOLOGY, Issue 3 2000G. F. Hoyne Summary Recognition of antigen by T cells in the periphery may lead either to the generation of productive immunity or the induction of tolerance. These two functional outcomes are a consequence of distinct pathways of T-cell differentiation. T cells are selected to become regulatory cells and their function is to maintain homeostasis with the immune system. In this review we discuss the cell-fate decisions that T cells might make allowing them to promote immunity or induce tolerance in the context of the role that Notch signalling may play in this process. [source] Cell-based immunotherapy with mesenchymal stem cells cures bisphosphonate-related osteonecrosis of the jaw,like disease in miceJOURNAL OF BONE AND MINERAL RESEARCH, Issue 7 2010Takashi Kikuiri Abstract Patients on high-dose bisphosphonate and immunosuppressive therapy have an increased risk of bisphosphonate-related osteonecrosis of the jaw (BRONJ); despite the disease severity, its pathophysiology remains unknown, and appropriate therapy is not established. Here we have developed a mouse model of BRONJ-like disease that recapitulates major clinical and radiographic manifestations of the human disease, including characteristic features of an open alveolar socket, exposed necrotic bone or sequestra, increased inflammatory infiltrates, osseous sclerosis, and radiopaque alveolar bone. We show that administration of zoledronate, a potent aminobisphosphonate, and dexamethasone, an immunosuppressant drug, causes BRONJ-like disease in mice in part by suppressing the adaptive regulatory T cells, Tregs, and activating the inflammatory T-helper-producing interleukin 17 cells, Th17. Most interestingly, we demonstrate that systemic infusion with mesenchymal stem cells (MSCs) prevents and cures BRONJ-like disease possibly via induction of peripheral tolerance, shown as an inhibition of Th17 and increase in Treg cells. The suppressed Tregs/Th17 ratio in zoledronate- and dexamethasone-treated mice is restored in mice undergoing salvage therapy with Tregs. These findings provide evidence of an immunity-based mechanism of BRONJ-like disease and support the rationale for in vivo immunomodulatory therapy using Tregs or MSCs to treat BRONJ. © 2010 American Society for Bone and Mineral Research [source] Decreased FOXP3 protein expression in patients with asthmaALLERGY, Issue 10 2009S. Provoost Background:, T-regulatory cells (Treg) are important in balancing immune responses and maintaining peripheral tolerance. Current evidence suggests that asthma is characterized by a relative deficiency in Treg, allowing T helper 2 cells to expand. In this study, we aimed to evaluate circulating Treg, defined by the protein FOXP3, in both control subjects and patients with stable asthma. Methods:, Peripheral blood mononuclear cells (PBMC) of control (n = 14) and asthmatic patients (n = 29) were labeled for CD4, CD25, and intracellular FOXP3 and analyzed using flow cytometry. In CD3/CD28 stimulated PBMC, the effects of dexamethasone on the transcription factors T-bet, GATA-3, FOXP3, and RORc2 and representative cytokines were studied. Results:, In control subjects and asthmatic patients, numbers of peripheral blood CD4+CD25high and CD4+CD25highFOXP3+ T-cells were similar. However, FOXP3 protein expression within CD4+CD25high T-cells was significantly decreased in asthmatic patients. There was a tendency for increased FOXP3 expression within CD4+CD25high T-cells in glucocorticosteroid-treated patients when compared to steroid-naive asthmatic patients. In stimulated PBMC, dexamethasone treatment increased the anti-/proinflammatory transcription ratios of FOXP3/GATA-3, FOXP3/T-bet, and FOXP3/RORc2. Conclusion:, Asthmatic patients have decreased FOXP3 protein expression within their CD4+CD25high Treg. Our findings also suggest that treatment with inhaled glucocorticosteroids in asthmatics might increase this FOXP3 protein expression within the CD4+CD25high T-cell population. [source] Prevention of red cell alloimmunization by CD25 regulatory T cells in mouse modelsAMERICAN JOURNAL OF HEMATOLOGY, Issue 8 2007Jin Yu Transfusion therapy is currently an effective therapeutic intervention in a number of diseases, including sickle cell disease. However, its use is complicated by a high incidence of red blood cell (RBC) alloimmunization in the transfusion recipients. The identification of T regulatory cells (Tregs) among the CD4+ CD25+ T cell subset as key regulators of peripheral tolerance in mice as well as humans has opened an exciting era in the prevention and treatment of autoimmune disease and for improving organ transplantation. However, their potential in inducing transfusion tolerance remains to be explored. We used red cells from mice transgenic for human glycophorin A blood group antigen as donor cells and transfused wild-type mice to induce alloantibodies, as an experimental system to study RBC alloimmunization. We found that depletion with anti-CD25 enhanced the alloantibody production, indicating that CD25 Tregs play an important role in regulation of alloantibody responses. More importantly, adoptive transfer of purified population of CD4+CD25+ but not CD4+CD25, cells from naïve mice prevented the induction of IgG and IgM alloantibody production in transfusion recipients, with a concomitant reduction in activated splenic B cells and macrophages. Similarly, adoptive transfer of purified populations of CD4+CD25+ cells from naïve mice into naïve syngeneic recipients inhibited the anti-Ig response to rat RBCs in the recipients but transfer of control CD4+CD25, cells did not. Altogether, our results demonstrate that Tregs participate in the control of transfusion-associated RBC alloantibody responses, opening up the possibility that Treg immunotherapy may be exploited for suppressing transfusion immunization events. Am. J. Hematol., 2007. © 2007 Wiley-Liss, Inc. [source] ORIGINAL ARTICLE: Impact of Female Sex Hormones on the Maturation and Function of Human Dendritic CellsAMERICAN JOURNAL OF REPRODUCTIVE IMMUNOLOGY, Issue 3 2009Sabine E. Segerer Problem, During pregnancy, the immune and the endocrine system cooperate to ensure that the fetal allograft develops without eliciting a maternal immune response. This is presumably in part achieved by dendritic cells (DCs) that play a dominant role in maintaining peripheral tolerance. In this study, we investigated whether female sex hormones, such as human chorionic gonadotropin (hCG), progesterone (Prog), and estradiol (E2), which are highly elevated during pregnancy, induce the differentiation of DCs into a tolerance-inducing phenotype. Methods/Results, Immature DCs were generated from blood-derived monocytes and differentiated in the presence of hCG, Prog, E2, or Dexamethasone (Dex) as a control. Unlike Dex, female sex hormones did not prevent the upregulation of surface markers characteristic for mature DCs, such as CD40, CD83, and CD86, except for hCG, which inhibited HLA-DR expression. Similarly, hCG, Prog, and E2 had any impact on neither the rearrangement of the F-actin cytoskeleton nor the enhanced chemokine secretion following DC maturation, both of which were strongly altered by Dex. Nevertheless, the T-cell stimulatory capacity of DCs was significantly reduced after hCG and E2 exposure. Conclusion, Our findings suggest that the female sex hormones hCG and E2 inhibit the T-cell stimulatory capacity of DCs, which may help in preventing an allogenic T-cell response against the embryo. [source] Partially circumventing peripheral tolerance for oncogene-specific prostate cancer immunotherapyTHE PROSTATE, Issue 7 2008Yilin C. Neeley Abstract BACKGROUND Failure of cancer immunotherapy is essentially due to immunological tolerance to tumor-associated antigens (TAAs), as these antigens are also expressed in healthy tissues. METHODS Here, we used transgenic adenocarcinoma of mouse prostate (TRAMP) mice, which develop lethal prostate cancer due to prostate-specific expression of SV40 T antigen (Tag), to evaluate effects of prostatic transformation on oncogene TAA-specific tolerance and to test the possibility of breaking such tolerance using a modified recombinant vaccinia virus. RESULTS We showed that Tag expression in TRAMP mice is uniquely extra-thymic, and levels of prostatic Tag expression positively correlate with malignant transformation of the prostate. Yet, young tumor-free TRAMP mice were tolerant to Tag antigen. We therefore attempted overcoming such peripheral oncogene-specific T cell tolerance through immunization with a vaccinia construct encoding Tag immunogenic epitopes. This vaccination modality showed that oncogene-specific tolerance was successfully overcome by effective in vivo priming of Tag-specific cytotoxic T cells (CTLs). However, this was restricted to young TRAMP mice. Tag-specific CTL from "tumor naïve" young TRAMP mice showed significant anti-tumor efficacy in vivo by eliminating established heterotopic prostate tumors and prolonging survival in SCID mice harboring Tag-expressing tumors. In contrast, older TRAMP mice with established prostate tumors exhibited oncogene-specific tolerance as evidenced by failure to generate Tag-specific CTL following Tag-specific immunization. CONCLUSIONS Peripheral tolerance can be overcome for effective anti-tumor therapy following oncogene-specific immunization. However, this ability to elicit oncogene-specific CTL is impeded in the tumor-bearing host, in the context of increased oncogene expression associated with tumor progression. Prostate 68: 715,727, 2008. © 2008 Wiley-Liss, Inc. [source] IFN-, Triggered STAT1-PKB/AKT Signalling Pathway Influences the Function of Alloantigen Reactive Regulatory T CellsAMERICAN JOURNAL OF TRANSPLANTATION, Issue 1 2010B. Wei CD4+CD25+Foxp3+ regulatory T cells (Tregs) play a key role in the induction and maintenance of peripheral tolerance. Rapid and transient production of IFN-, by Tregs from mice tolerized to alloantigen in vivo has been shown to be critical for their regulatory function. This IFN-, has the potential to affect the function of cells present in the same local microenvironment as the Tregs, including the Tregs themselves. Here we investigated the mechanism by which IFN-, produced by Tregs triggered signaling pathways in alloantigen reactive Tregs themselves thereby influencing their function in vivo. We show that IFN-, production and STAT1 activation was increased, while STAT1-dependent PKB/AKT activation was downregulated in alloantigen reactive Tregs. Further, the activation of STAT1 was blocked in IFN-, receptor deficient as well as IFN-,,deficient Tregs, suggesting that IFN-, produced by the alloantigen reactive Tregs might act in an autocrine manner to induce STAT1 activation. Importantly, STAT1-deficient Tregs failed to control allograft rejection in vivo. Overall, these findings suggest that the IFN-,,induced STAT1-PKB/AKT signaling pathway plays a key role in upregulating the ability of alloantigen reactive Tregs to control graft rejection in vivo. [source] Mast Cell Degranulation Breaks Peripheral ToleranceAMERICAN JOURNAL OF TRANSPLANTATION, Issue 10 2009V. C. De Vries Mast cells (MC) have been shown to mediate regulatory T-cell (Treg)-dependent, peripheral allograft tolerance in both skin and cardiac transplants. Furthermore, Treg have been implicated in mitigating IgE-mediated MC degranulation, establishing a dynamic, reciprocal relationship between MC and Treg in controlling inflammation. In an allograft tolerance model, it is now shown that intragraft or systemic MC degranulation results in the transient loss of Treg suppressor activities with the acute, T-cell dependent rejection of established, tolerant allografts. Upon degranulation, MC mediators can be found in the skin, Treg rapidly leave the graft, MC accumulate in the regional lymph node and the Treg are impaired in the expression of suppressor molecules. Such a dramatic reversal of Treg function and tissue distribution by MC degranulation underscores how allergy may causes the transient breakdown of peripheral tolerance and episodes of acute T-cell inflammation. [source] Islet Allograft Rejection by Contact-Dependent CD8+ T cells: Perforin and FasL Play Alternate but Obligatory Roles,AMERICAN JOURNAL OF TRANSPLANTATION, Issue 8 2007M. Sleater Though CD8+ T lymphocytes are important cellular mediators of islet allograft rejection, their molecular mechanism of rejection remains unidentified. Surprisingly, while it is generally assumed that CD8+ T cells require classic cytotoxic mechanisms to kill grafts in vivo, neither perforin nor FasL (CD95L) are required for acute islet allograft rejection. Thus, it is unclear whether such contact-dependent cytotoxic pathways play an essential role in islet rejection. Moreover, both perforin and CD95L have been implicated in playing roles in peripheral tolerance, further obscuring the role of these effector pathways in rejection. Therefore, we determined whether perforin and/or FasL (CD95L) were required by donor MHC-restricted (,direct') CD8+ T cells to reject islet allografts in vivo. Islet allograft rejection by primed, alloreactive CD8+ T cells was examined independently of other lymphocyte subpopulations via adoptive transfer studies. Individual disruption of T-cell-derived perforin or allograft Fas expression had limited impact on graft rejection. However, simultaneous disruption of both pathways prevented allograft rejection in most recipients despite the chronic persistence of transferred T cells at the graft site. Thus, while there are clearly multiple cellular pathways of allograft rejection, perforin and FasL comprise alternate and necessary routes of acute CD8+ T-cell-mediated islet allograft rejection. [source] Mouse Strain and Injection Site are Crucial for Detecting Linked Suppression in Transplant Recipients by Trans-Vivo DTH AssayAMERICAN JOURNAL OF TRANSPLANTATION, Issue 2 2007W.J. Burlingham Chemokine-driven accumulation of lymphocytes, mononuclear and polymorphonuclear proinflammatory cells in antigenic tissue sites is a key feature of several types of T-cell-dependent autoimmunity and transplant rejection pathology. It is now clear that the immune system expends considerable energy to control this process, exemplified by the sequential layers of regulatory cell input, both innate and adaptive, designed to prevent a classical Type IV or ,delayed-type' hypersensitivity (DTH) reaction from occurring in the visual field of the eye. Yet, despite an abundance of in vitro assays currently available to the human T-cell immunologist, none of them adequately models the human DTH response and its various control features. The theme of this article is that it is relatively easy to model the effector side of the human DTH response with xenogeneic adoptive transfer models. However, we show that in order to detect inhibition of a recall DTH in response to colocalized donor antigen (linked suppression),a characteristic feature of peripheral tolerance to an organ transplant,both the challenge site and the immunocompetence of the mouse adoptive host are critical factors limiting the sensitivity of the trans-vivo DTH test. [source] Allogeneic Parenchymal and Hematopoietic Tissues Differ in Their Ability to Induce Deletion of Donor-Reactive T CellsAMERICAN JOURNAL OF TRANSPLANTATION, Issue 12 2003Thomas R. Jones The establishment of immune tolerance to self antigen expressed exclusively in the periphery is a crucial yet incompletely understood feature of the immune system. A dominant concept of peripheral tolerance has been that exposure of T cells to signal one, the TCR,MHC interaction, in the absence of signal two, or costimulation, is a major mechanism of peripheral tolerance. This model suggests that any cell type that expresses MHC-peptide complexes, be they of self or foreign origin, should have the capacity to tolerize antigen-specific T cells when critical costimulatory interactions are interrupted. However, a spectrum of responses, from permanent engraftment to rapid rejection, has been observed in various transplantation models utilizing costimulatory blockade. Therefore we undertook a series experiments to directly assess the tolerogenic potential of donor hematopoietic and parenchymal cells. We find that allogeneic tissues differ profoundly in their ability to promote peripheral tolerance concurrent with combined blockade of B7-CD28 and CD40-CD40L pathways. Non-vascularized and vascularized parenchymal grafts as well as donor-specific transfusions promote varying degrees of donor-specific hyporesponsiveness, but fail to induce donor-reactive T-cell deletion; whereas establishment of stable hematopoietic chimerism promotes specific tolerance mediated by deletion of donor-reactive cells in the periphery. [source] The programmed death 1/programmed death ligand 1 inhibitory pathway is up-regulated in rheumatoid synovium and regulates peripheral T cell responses in human and murine arthritisARTHRITIS & RHEUMATISM, Issue 7 2010Amalia P. Raptopoulou Objective T cells play a major role in the pathogenesis of rheumatoid arthritis (RA). The programmed death 1 (PD-1)/programmed death ligand 1 (PDL-1) pathway is involved in peripheral tolerance through inhibition of T cells at the level of synovial tissue. The aim of this study was to examine the role of PD-1/PDL-1 in the regulation of human and murine RA. Methods In synovial tissue and synovial fluid (SF) mononuclear cells from patients with RA, expression of PD-1/PDL-1 was examined by immunohistochemistry and flow cytometry, while PD-1 function was assessed in RA peripheral blood (PB) T cells after stimulation of the cells with anti-CD3 and PDL-1.Fc to crosslink PD-1. Collagen-induced arthritis (CIA) was induced in PD-1,/, C57BL/6 mice, and recombinant PDL-1.Fc was injected intraperitoneally to activate PD-1 in vivo. Results RA synovium and RA SF were enriched with PD-1+ T cells (mean ± SEM 24 ± 5% versus 4 ± 1% in osteoarthritis samples; P = 0.003) and enriched with PDL-1+ monocyte/macrophages. PD-1 crosslinking inhibited both T cell proliferation and production of interferon-, (IFN,) in RA patients; PB T cells incubated with RA SF, as well as SF T cells from patients with active RA, exhibited reduced PD-1,mediated inhibition of T cell proliferation at suboptimal, but not optimal, concentrations of PDL-1.Fc. PD-1,/, mice demonstrated increased incidence of CIA (73% versus 36% in wild-type mice; P < 0.05) and greater severity of CIA (mean maximum arthritis score 5.0 versus 2.3 in wild-type mice; P = 0.040), and this was associated with enhanced T cell proliferation and increased production of cytokines (IFN, and interleukin-17) in response to type II collagen. PDL-1.Fc treatment ameliorated the severity of CIA and reduced T cell responses. Conclusion The negative costimulatory PD-1/PDL-1 pathway regulates peripheral T cell responses in both human and murine RA. PD-1/PDL-1 in rheumatoid synovium may represent an additional target for immunomodulatory therapy in RA. [source] Genetic, immunologic, and immunohistochemical analysis of the programmed death 1/programmed death ligand 1 pathway in human systemic lupus erythematosusARTHRITIS & RHEUMATISM, Issue 1 2009George K. Bertsias Objective A putative regulatory intronic polymorphism (PD1.3) in the programmed death 1 (PD-1) gene, a negative regulator of T cells involved in peripheral tolerance, is associated with increased risk for systemic lupus erythematosus (SLE). We undertook this study to determine the expression and function of PD-1 in SLE patients. Methods We genotyped 289 SLE patients and 256 matched healthy controls for PD1.3 by polymerase chain reaction,restriction fragment length polymorphism analysis. Expression of PD-1 and its ligand, PDL-1, was determined in peripheral blood lymphocytes and in renal biopsy samples by flow cytometry and immunohistochemistry. A crosslinker of PD-1 was used to assess its effects on anti-CD3/anti-CD28,induced T cell proliferation and cytokine production. Results SLE patients had an increased frequency of the PD1.3 polymorphism (30.1%, versus 18.4% in controls; P = 0.006), with the risk A allele conferring decreased transcriptional activity in transfected Jurkat cells. Patients homozygous for PD1.3,but not patients heterozygous for PD1.3,had reduced basal and induced PD-1 expression on activated CD4+ T cells. In autologous mixed lymphocyte reactions (AMLRs), SLE patients had defective PD-1 induction on activated CD4+ cells; abnormalities were more pronounced among homozygotes. PD-1 was detected within the glomeruli and renal tubules of lupus nephritis patients, while PDL-1 was expressed by the renal tubules of both patients and controls. PD-1 crosslinking suppressed proliferation and cytokine production in both normal and lupus T cells; addition of serum from patients with active SLE significantly ameliorated this effect on proliferation. Conclusion SLE patients display aberrant expression and function of PD-1 attributed to both direct and indirect effects. The expression of PD-1/PDL-1 in renal tissue and during AMLRs suggests an important role in regulating peripheral T cell tolerance. [source] Dysfunctional CD4+,CD25+ regulatory T cells in untreated active systemic lupus erythematosus secondary to interferon-,,producing antigen-presenting cellsARTHRITIS & RHEUMATISM, Issue 3 2008Bing Yan Objective To explore whether there are extrinsic factors that impair the suppressive function of CD4+,CD25+ regulatory T cells in patients with untreated active systemic lupus erythematosus (SLE). Methods We studied 15 patients with untreated active SLE, 10 patients with SLE in remission, and 15 healthy control subjects. Percentages of CD4+,CD25+,FoxP3+ Treg cells and levels of forkhead box P3 (FoxP3) protein were analyzed by flow cytometry. Expression of messenger RNA (mRNA) for FoxP3 in purified Treg cell populations was assessed by real-time polymerase chain reaction analysis. Experiments examining Treg cell function in SLE were designed to distinguish primary from secondary T cell dysfunction. Levels of interferon-, (IFN,) in supernatants from the function assays were determined with an IFN-stimulated response element,luciferase reporter assay. Results The percentage of CD4+,CD25+, FoxP3+ cells in peripheral blood was significantly increased in SLE patients as compared with controls (mean ± SEM 9.11 ± 0.73% versus 4.78 ± 0.43%; P < 0.0001). We found no difference in FoxP3 expression at either the mRNA or protein level in any CD4+,CD25+ T cell subset from SLE patients as compared with controls. Antigen-presenting cells (APCs) from SLE patients were responsible for decreased Treg cell activity and could also render dysfunctional Treg cells from healthy control subjects. CD4+,CD25+ Treg cells from SLE patients exhibited normal suppressive activity when cultured with APCs from healthy controls. A partial Treg cell blockade effect was induced by the high levels of IFN, derived from SLE patient APCs. Conclusion We suggest that blockade of Treg cell,mediated suppression by IFN,-producing APCs in SLE patients may contribute to a pathogenic loss of peripheral tolerance in this disease. [source] |