Peripheral Tissues (peripheral + tissue)

Distribution by Scientific Domains
Distribution within Medical Sciences


Selected Abstracts


Daily Rhythms in Glucose Metabolism: Suprachiasmatic Nucleus Output to Peripheral Tissue

JOURNAL OF NEUROENDOCRINOLOGY, Issue 3 2003
S. E. La Fleur
Abstract The body has developed several control mechanisms to maintain plasma glucose concentrations within strict boundaries. Within those physiological boundaries, a clear daily rhythm in plasma glucose concentrations is present; this rhythm depends on the biological clock, which is located in the hypothalamic suprachiasmatic nucleus (SCN), and is independent of the daily rhythm in food intake. Interestingly, there is also a daily rhythm in glucose uptake, which also depends on the SCN and follows the same pattern as the daily rhythm in plasma glucose concentrations; both rise before the onset of activity. Thus, the SCN prepares the individual for the upcoming activity period in two different ways: by increasing plasma glucose concentrations and by facilitating tissue glucose uptake. In addition to this anticipation of glucose metabolism to expected glucose demands, the SCN also influences, depending on the time of the day, the responses of pancreas and liver to abrupt glucose changes (such as a glucose rise after a meal or hypoglycaemia). This review presents the view that the SCN uses different routes to (i) maintain daily glucose balance and (ii) set the level of the endocrine response to abrupt blood glucose changes. [source]


Epigenetic abnormality of SRY gene in the adult XY female with pericentric inversion of the Y chromosome

CONGENITAL ANOMALIES, Issue 2 2010
Tomoko Mitsuhashi
ABSTRACT In normal ontogenetic development, the expression of the sex-determining region of the Y chromosome (SRY) gene, involved in the first step of male sex differentiation, is spatiotemporally regulated in an elaborate fashion. SRY is expressed in germ cells and Sertoli cells in adult testes. However, only few reports have focused on the expressions of SRY and the other sex-determining genes in both the classical organ developing through these genes (gonad) and the peripheral tissue (skin) of adult XY females. In this study, we examined the gonadal tissue and fibroblasts of a 17-year-old woman suspected of having disorders of sexual differentiation by cytogenetic, histological, and molecular analyses. The patient was found to have the 46,X,inv(Y)(p11.2q11.2) karyotype and streak gonads with abnormally prolonged SRY expression. The sex-determining gene expressions in the patient-derived fibroblasts were significantly changed relative to those from a normal male. Further, the acetylated histone H3 levels in the SRY region were significantly high relative to those of the normal male. As SRY is epistatic in the sex-determination pathway, the prolonged SRY expression possibly induced a destabilizing effect on the expressions of the downstream sex-determining genes. Collectively, alterations in the sex-determining gene expressions persisted in association with disorders of sexual differentiation not only in the streak gonads but also in the skin of the patient. The findings suggest that correct regulation of SRY expression is crucial for normal male sex differentiation, even if SRY is translated normally. [source]


GPR30 estrogen receptor agonists induce mechanical hyperalgesia in the rat

EUROPEAN JOURNAL OF NEUROSCIENCE, Issue 7 2008
Julia Kuhn
Abstract We evaluated the signalling pathway by which estrogen acts in peripheral tissue to produce protein kinase C, (PKC,)-dependent mechanical hyperalgesia. Specific agonists for the classical estrogen receptors (ER), ER, and ER,, did not result in activation of PKC, in neurons of dissociated rat dorsal root ganglia. In contrast, G-1, a specific agonist of the recently identified G-protein-coupled estrogen receptor, GPR30, induced PKC, translocation. Involvement of GPR30 and independence of ER, and ER, was confirmed using the GPR30 agonist and simultaneous ER, and ER, antagonist ICI 182,780 (fulvestrant). The GPR30 transcript could be amplified from dorsal root ganglia tissue. We found estrogen-induced as well as GPR30-agonist-induced PKC, translocation to be restricted to the subgroup of nociceptive neurons positive for isolectin IB4 from Bandeiraea simplicifolia. Corroborating the cellular results, both GPR30 agonists, G-1 as well as ICI 182,780, resulted in the onset of PKC,-dependent mechanical hyperalgesia if injected into paws of adult rats. We therefore suggest that estrogen acts acutely at GPR30 in nociceptors to produce mechanical hyperalgesia. [source]


Proteomics in Alzheimer's disease: insights into potential mechanisms of neurodegeneration

JOURNAL OF NEUROCHEMISTRY, Issue 6 2003
D. Allan Butterfield
Abstract Proteomics involves the identification of unknown proteins following their separation, often using two-dimensional electrophoresis, digestion of particular proteins of interest by trypsin, determination of the molecular weight of the resulting peptides, and database searching to make the identification of the proteins. Application of proteomics to Alzheimer's disease (AD), the major dementing disorder of the elderly, has just begun. Differences in protein expression and post-translational modification (mostly oxidative modification) of proteins from AD brain and peripheral tissue, as well as in brain from rodent models of AD, have yielded insights into potential molecular mechanisms of neurodegeneration in this dementing disorder. This review surveys the proteomics studies relevant to AD, from which new understandings of the pathology, biochemistry, and physiology of AD are beginning to emerge. [source]


Insulin inhibits extracellular regulated kinase 1/2 phosphorylation in a phosphatidylinositol 3-kinase (PI3) kinase-dependent manner in Neuro2a cells

JOURNAL OF NEUROCHEMISTRY, Issue 1 2003
L. P. Van Der Heide
Abstract Insulin signalling is well studied in peripheral tissue, but not in neuronal tissue. To gain more insight into neuronal insulin signalling we examined protein kinase B (PKB) and extracellular regulated kinase 1 and 2 (ERK1/2) regulation in serum-deprived Neuro2a cells. Insulin phosphorylated PKB in a dose-dependent manner but reduced phosphorylation of ERK1/2. Both processes were phosphatidylinositol 3-kinase (PI3K) dependent. Interestingly, blockade of PI3K in combination with insulin induced phosphorylation of ERK1/2. The phosphorylation of ERK1/2 could be blocked with a specific inhibitor of mitogen-activated protein/ERK kinase (MEK), suggesting that it was mediated through the highly conserved Ras,Raf,MEK,ERK1/2 pathway. Prolonged exposure to high concentrations of insulin resulted in a desensitized PI3K,PKB route. The insulin-induced inhibition of ERK1/2 phosphorylation was also diminished when the PI3K,PKB route was desensitized. Blockade of PI3K in combination with insulin, however, still resulted in an unaltered MEK-dependent phosphorylation of ERK1/2. We conclude that PI3K is an important integrator of insulin signalling in Neuro2a cells as it regulates activation of PKB and inhibition of ERK1/2, and is sensitive to the duration of the insulin stimulus. [source]


Melatonin and circadian biology in human cardiovascular disease

JOURNAL OF PINEAL RESEARCH, Issue 1 2010
Alberto Dominguez-Rodriguez
Abstract:, Diurnal rhythms influence cardiovascular physiology, i.e. heart rate and blood pressure, and they appear to also modulate the incidence of serious adverse cardiac events. Diurnal variations occur also at the molecular level including changes in gene expression in the heart and blood vessels. Moreover, the risk/benefit ratio of some therapeutic strategies and the concentration of circulating cardiovascular system biomarkers may also vary across the 24-hr light/dark cycle. Synchrony between external and internal diurnal rhythms and harmony among molecular rhythms within the cell are essential for normal organ biology. Diurnal variations in the responsiveness of the cardiovascular system to environmental stimuli are mediated by a complex interplay between extracellular (i.e. neurohumoral factors) and intracellular (i.e. specific genes that are differentially light/dark regulated) mechanisms. Neurohormones, which are particularly relevant to the cardiovascular system, such as melatonin, exhibit a diurnal variation and may play a role in the synchronization of molecular circadian clocks in the peripheral tissue and the suprachiasmatic nucleus. Moreover, mounting evidence reveals that the blood melatonin rhythm has a crucial role in several cardiovascular functions, including daily variations in blood pressure. Melatonin has antioxidant, anti-inflammatory, chronobiotic and, possibly, epigenetic regulatory functions. This article reviews current knowledge related to the biological role of melatonin and its circadian rhythm in cardiovascular disease. [source]


The story of O , is oxytocin the mediator of the placebo response?

NEUROGASTROENTEROLOGY & MOTILITY, Issue 4 2009
P. Enck
Abstract, While the placebo responses in various medical conditions have been shown to follow a few basic principles such as expectancies, reward learning and Pavlovian conditioning, the underlying neurobiology and the mediating hormonal and/or neuromodulating processing have remained obscure. We here report the collected evidence that oxytocin (OXT), a 389-amino acid polypeptide located on chromosome 3p25 that is released in the brain (hypothalamus) and in peripheral tissue, is the central mediator of the placebo response: we hypothesize that exogenous OXT via an OXT agonist will enhance the placebo response, while exogenous OXT blockade by an antagonist will reduce the placebo response in placebo analgesia and other placebo models. It is furthermore proposed that the placebo response in trials may be predicted by circulating plasma OXT levels, the OXT receptor density in the brain and/or the presence of one or more of the single nucleotide polymorphisms of the OXT promoter gene. [source]


Functions of corticotropin-releasing hormone in anthropoid primates: From brain to placenta

AMERICAN JOURNAL OF HUMAN BIOLOGY, Issue 4 2006
Michael L. Power
Corticotropin-releasing hormone (CRH) is an ancient regulatory molecule. The CRH hormone family has at least four ligands, two receptors, and a binding protein. Its well-known role in the hypothalamic-pituitary-adrenal (HPA) axis is only one of many. The expression of CRH and its related peptides is widespread in peripheral tissue, with important functions in the immune system, energy metabolism, and female reproduction. For example, CRH is involved in the implantation of fertilized ova and in maternal tolerance to the fetus. An apparently unique adaptation has evolved in anthropoid primates: placental expression of CRH. Placental CRH stimulates the fetal adrenal zone, an adrenal structure unique to primates, to produce dehydroepiandrosterone sulfate (DHEAS), which is converted to estrogen by the placenta. Cortisol induced from the fetal and maternal adrenal glands by placental CRH induces further placental CRH expression, forming a positive feedback system that results in increasing placental production of estrogen. In humans, abnormally high placental expression of CRH is associated with pregnancy complications (e.g., preterm labor, intrauterine growth restriction (IUGR), and preeclampsia). Within anthropoid primates, there are at least two patterns of placental CRH expression over gestation: monkeys differ from great apes (and humans) by having a midgestational peak in CRH expression. The functional significance of these differences between monkeys and apes is not yet understood, but it supports the hypothesis that placental CRH performs multiple roles during gestation. A clearer understanding of the diversity of patterns of placental CRH expression among anthropoid primates would aid our understanding of its role in human pregnancy. Am. J. Hum. Biol. 18:431,447, 2006. © 2006 Wiley-Liss, Inc. [source]


AMPK activators , potential therapeutics for metabolic and other diseases

ACTA PHYSIOLOGICA, Issue 1 2009
G. Zhou
Abstract AMP-activated protein kinase (AMPK)-mediated cellular metabolic responses to tissue-specific and whole-body stimuli play a vital role in the control of energy homeostasis. As a cellular energy-sensing mechanism, AMPK activation stimulates glucose uptake and fat oxidation, while it suppresses lipogenesis and gluconeogenesis. The cumulative effects of AMPK activation lead to beneficial metabolic states in liver, muscle and other peripheral tissues that are critical in the pathogenesis of obesity, type 2 diabetes and related metabolic disorders. Activators of AMPK that target selected tissues hold potential as novel therapeutics for diseases in which altered energy metabolism contributes to aetiology. [source]


Multiple sites of L-histidine decarboxylase expression in mouse suggest novel developmental functions for histamine

DEVELOPMENTAL DYNAMICS, Issue 1 2001
Kaj Karlstedt
Abstract Histamine mediates many types of physiologic signals in multicellular organisms. To clarify the developmental role of histamine, we have examined the developmental expression of L-histidine decarboxylase (HDC) mRNA and the production of histamine during mouse development. The predominant expression of HDC in mouse development was seen in mast cells. The HDC expression was evident from embryonal day 13 (Ed13) until birth, and the mast cells were seen in most peripheral tissues. Several novel sites with a prominent HDC mRNA expression were revealed. In the brain, the choroid plexus showed HDC expression at Ed14 and the raphe neurons at Ed15. Close to the parturition, at Ed19, the neurons in the tuberomammillary (TM) area and the ventricular neuroepithelia also displayed a clear HDC mRNA expression and histamine immunoreactivity (HA-ir). From Ed14 until birth, the olfactory and nasopharyngeal epithelia showed an intense HDC mRNA expression and HA-ir. In the olfactory epithelia, the olfactory receptor neurons (ORN) were shown to have very prominent histamine immunoreactivity. The bipolar nerve cells in the epithelium extended both to the epithelial surface and into the subepithelial layers to be collected into thick nerve bundles extending caudally toward the olfactory bulbs. Also, in the nasopharynx, an extensive subepithelial network of histamine-immunoreactive nerve fibers were seen. Furthermore, in the peripheral tissues, the degenerating mesonephros (Ed14) and the convoluted tubules in the developing kidneys (Ed15) showed HDC expression, as did the prostate gland (Ed15). In adult mouse brain, the HDC expression resembled the neuronal pattern observed in rat brain. The expression was restricted to the TM area in the ventral hypothalamus, with the main expression in the five TM subgroups called E1,E5. A distinct mouse HDC mRNA expression was also seen in the ependymal wall of the third ventricle, which has not been reported in the rat. The tissue- and cell-specific expression patterns of HDC and histamine presented in this work indicate that histamine could have cell guidance or regulatory roles in development. © 2001 Wiley-Liss, Inc. [source]


Effects of insulin resistance on endothelial function: possible mechanisms and clinical implications

DIABETES OBESITY & METABOLISM, Issue 10 2008
D Tousoulis
Insulin resistance (IR) is defined as a reduced responsiveness of peripheral tissues to the effects of the hormone, referring to abated ability of insulin in stimulating glucose uptake in peripheral tissues and in inhibiting hepatic glucose output. Insulin has both a vasodilatory effect, which is largely endothelium dependent through the release of nitric oxide, and a vasoconstrictory effect through the stimulation of the sympathetic nervous system and the release of endothelin-1. IR and endothelial dysfunction (ED) are not only linked by common pathogenetic mechanisms, involving deranged insulin signalling pathways, but also by other, indirect to the hormone's actions, mechanisms. Different treatment modalities have been proposed to affect positively both the metabolic effects of insulin and ED. Weight loss has been shown to improve sensitivity to insulin as a result of either altered diet or exercise. Exercise has favourable effects on endothelial function in normal states and in states of disease, in men and women, and throughout the age spectrum and, hence, in IR states. Metformin improves sensitivity to insulin and most likely affects positively ED. Studies have shown that inhibitors of the renin,angiotensin system alter IR favourably, while Angiotensin converting enzyme (ACE) inhibitors and Angiotensin receptor type II (ATII) inhibitors improve ED. Ongoing studies are expected to shed more light on the issue of whether treatment with the thiazolidinediones results in improvement of endothelial function, along with the accepted function of improving insulin sensitivity. Finally, improved endothelial function by such treatments is not in itself proof of reduced risk for atherosclerosis; this remains to be directly tested in clinical trials. [source]


The role of insulin-like growth factor-I and its binding proteins in glucose homeostasis and type 2 diabetes

DIABETES/METABOLISM: RESEARCH AND REVIEWS, Issue 1 2009
Swapnil N. Rajpathak
Abstract This review addresses the possible role of the insulin-like growth factor (IGF)-axis in normal glucose homoeostasis and in the etiopathogenesis of type 2 diabetes. IGF-I, a peptide hormone, shares amino acid sequence homology with insulin and has insulin-like activity; most notably, the promotion of glucose uptake by peripheral tissues. Type 2 diabetes as well as pre-diabetic states, including impaired fasting glucose and impaired glucose tolerance, are associated cross-sectionally with altered circulating levels of IGF-I and its binding proteins (IGFBPs). Administration of recombinant human IGF-I has been reported to improve insulin sensitivity in healthy individuals as well as in patients with insulin resistance and type 2 diabetes. Further, IGF-I may have beneficial effects on systemic inflammation, a risk factor for type 2 diabetes, and on pancreatic ,-cell mass and function. There is considerable inter-individual heterogeneity in endogenous levels of IGF-I and its binding proteins; however, the relationship between these variations and the risk of developing type 2 diabetes has not been extensively investigated. Large prospective studies are required to evaluate this association. Copyright © 2009 John Wiley & Sons, Ltd. [source]


Inflamed adipose tissue, insulin resistance and vascular injury

DIABETES/METABOLISM: RESEARCH AND REVIEWS, Issue 8 2008
Christian X. Andersson
Abstract Type 2 diabetes is the most common metabolic disorder today and has reached epidemic proportions in many countries. Insulin resistance and inflammation play a central role in the pathogenesis of type 2 diabetes and are present long before the onset of the disease. During this time, many of the complications associated with type 2 diabetes are initiated. Of major concern is the two- to fourfold increase in cardiovascular morbidity and mortality in this group compared to a nondiabetic population. Obesity, characterized by enlarged fat cells, and insulin resistance are, like type 2 diabetes, associated with impaired adipogenesis and a low-grade chronic inflammation that to a large extent emanates from the adipose tissue. Both these processes contribute to unfavourable alterations of the circulating levels of several bioactive molecules (adipokines) that are secreted from the adipose tissue, many of which have documented inhibitory effects on insulin sensitivity in the liver and peripheral tissues and, in addition, have negative effects on the cardiovascular system. Here we review current knowledge of the adipose tissue as an endocrine organ, the local and systemic effects of a chronic state of low-grade inflammation residing in the adipose tissue, and, in particular, the effects of inflammation and circulating adipokines on the vascular wall. Copyright © 2008 John Wiley & Sons, Ltd. [source]


Sequential phases in the development of Aire-expressing medullary thymic epithelial cells involve distinct cellular input

EUROPEAN JOURNAL OF IMMUNOLOGY, Issue 4 2008
Andrea
Abstract Intrathymic deletion of immature thymocytes that express self-reactive TCR specificities is essential in the generation of self tolerance. Medullary thymic epithelial cells (mTEC) expressing the transcriptional regulator Aire play a key role in this process by regulating expression of tissue-restricted antigens to ensure tolerance to peripheral tissues. Here, we have analysed the cellular and molecular requirements for the initial appearance of Aire+ mTEC in the embryonic thymus, in addition to their persistence in the adult thymus. Analysis of thymic ontogeny shows that the emergence of embryonic Aire+ mTEC occurs prior to the appearance of mature thymocytes, and depends upon lymphoid tissue inducer cells expressing retinoic acid receptor-related orphan receptor,,. In the adult thymus, we show that Aire+ mTEC develop in the absence of thymocyte positive and negative selection and CD40 signalling, but are present at reduced frequency. Collectively these data support a model where the initial differentiation of Aire+ mTEC involves receptor activator of NF-,B (RANK)-RANKL interactions with lymphoid tissue inducer cells, with subsequent mTEC turnover and/or survival involving CD40-mediated signalling following interactions with mature CD4+ thymocytes that express CD40L. [source]


Unpredictable feeding schedules unmask a system for daily resetting of behavioural and metabolic food entrainment

EUROPEAN JOURNAL OF NEUROSCIENCE, Issue 10 2007
Carolina Escobar
Abstract Restricted feeding schedules (RFS) are a potent Zeitgeber that uncouples daily metabolic and clock gene oscillations in peripheral tissues from the suprachiasmatic nucleus (SCN), which remains entrained to the light,dark cycle. Under RFS, animals develop food anticipatory activity (FAA), characterized by arousal and increased locomotion. Food availability in nature is not precise, which suggests that animals need to adjust their food-associated activity on a daily basis. This study explored the capacity of rats to adjust to variable and unpredictable feeding schedules. Rats were exposed either to RFS with fixed daily meal (RF) or to a variable meal time (VAR) during the light phase. RF and VAR rats exhibited daily metabolic oscillations driven by the last meal event; however, VAR rats were not able to show a robust adjustment in the anticipating corticosterone peak. VAR rats were unable to exhibit FAA but exhibited a daily activation pattern in phase with the previous meal. In both groups the dorsomedial nucleus of the hypothalamus and arcuate nucleus, involved in energy balance, exhibited increased c-Fos expression 24 h after the last meal, while only RF rats exhibited low c-Fos expression in the SCN. Data show that metabolic and behavioural food-entrained rhythms can be reset on a daily basis; the two conditions elicit a similar hypothalamic response, while only the SCN is inhibited in rats exhibiting anticipatory activity. The variable feeding strategy uncovered a rapid (24-h basis) resetting mechanism for metabolism and general behaviour. [source]


Deficits in spatial learning and synaptic plasticity induced by the rapid and competitive broad-spectrum cyclooxygenase inhibitor ibuprofen are reversed by increasing endogenous brain-derived neurotrophic factor

EUROPEAN JOURNAL OF NEUROSCIENCE, Issue 11 2003
Kendra N. Shaw
Abstract Cyclooxygenase (COX), which is present in two isoforms (COX1 and 2), synthesizes prostaglandins from arachidonic acid; it plays a crucial role in inflammation in both central and peripheral tissues. Here, we describe its role in synaptic plasticity and spatial learning in vivo via an effect on brain-derived neurotrophic factor (BDNF) and prostaglandin E2 (PGE2; both measured by Elisa). We found that broad-spectrum COX inhibition (BSCI) inhibits the induction of long-term potentiation (LTP; the major contemporary model of synaptic plasticity), and causes substantial and sustained deficits in spatial learning in the watermaze. Increases in BDNF and PGE2 following spatial learning and LTP were also blocked. Importantly, 4 days of prior exercise in a running wheel increased endogenous BDNF levels sufficiently to reverse the BSCI of LTP and spatial learning, and restored a parallel increase in LTP and learning-related BDNF and PGE2. In control experiments, we found that BSCI had no effect on baseline synaptic transmission or on the nonhippocampal visible-platform task; there was no evidence of gastric ulceration from BSCI. COX2 is inhibited by glucorticoids; there was no difference in blood corticosterone levels as measured by radioimmunoassay in any condition. Thus, COX plays a previously undescribed, permissive role in synaptic plasticity and spatial learning via a BDNF-associated mechanism. [source]


Monitoring neuropeptide-specific proteases: processing of the proopiomelanocortin peptides adrenocorticotropin and , -melanocyte-stimulating hormone in the skin

EXPERIMENTAL DERMATOLOGY, Issue 10 2006
Simone König
Abstract:, The neuroendocrine precursor protein proopiomelanocortin (POMC) and its derived neuropeptides are involved in a number of important regulatory processes in the central nervous system as well as in peripheral tissues. Despite its important role in controlling the local activation of melanocortin (MC) receptors, the extracellular proteolytic processing of POMC peptides has received little attention. The mechanisms relevant for controlling the bioavailability of adrenocorticotropin and melanocyte-stimulating hormones for the corresponding MC receptors in the skin by specific peptidases such as neprilysin (neutral endopeptidase; NEP) or angiotensin-converting enzyme (ACE) have been addressed in a number of recent investigations. This review summarizes the current body of knowledge concerning the qualitative and quantitative POMC peptide processing with respect to the action and specificity of NEP and ACE and discusses relevant recent analytical methodologies. [source]


Exercise-induced neuronal plasticity in central autonomic networks: role in cardiovascular control

EXPERIMENTAL PHYSIOLOGY, Issue 9 2009
Lisete C. Michelini
It is now well established that brain plasticity is an inherent property not only of the developing but also of the adult brain. Numerous beneficial effects of exercise, including improved memory, cognitive function and neuroprotection, have been shown to involve an important neuroplastic component. However, whether major adaptive cardiovascular adjustments during exercise, needed to ensure proper blood perfusion of peripheral tissues, also require brain neuroplasticity, is presently unknown. This review will critically evaluate current knowledge on proposed mechanisms that are likely to underlie the continuous resetting of baroreflex control of heart rate during/after exercise and following exercise training. Accumulating evidence indicates that not only somatosensory afferents (conveyed by skeletal muscle receptors, baroreceptors and/or cardiopulmonary receptors) but also projections arising from central command neurons (in particular, peptidergic hypothalamic pre-autonomic neurons) converge into the nucleus tractus solitarii (NTS) in the dorsal brainstem, to co-ordinate complex cardiovascular adaptations during dynamic exercise. This review focuses in particular on a reciprocally interconnected network between the NTS and the hypothalamic paraventricular nucleus (PVN), which is proposed to act as a pivotal anatomical and functional substrate underlying integrative feedforward and feedback cardiovascular adjustments during exercise. Recent findings supporting neuroplastic adaptive changes within the NTS,PVN reciprocal network (e.g. remodelling of afferent inputs, structural and functional neuronal plasticity and changes in neurotransmitter content) will be discussed within the context of their role as important underlying cellular mechanisms supporting the tonic activation and improved efficacy of these central pathways in response to circulatory demand at rest and during exercise, both in sedentary and in trained individuals. We hope this review will stimulate more comprehensive studies aimed at understanding cellular and molecular mechanisms within CNS neuronal networks that contribute to exercise-induced neuroplasticity and cardiovascular adjustments. [source]


Vasopressin receptor antagonism , a therapeutic option in heart failure and hypertension

EXPERIMENTAL PHYSIOLOGY, Issue 2000
Louise M. Burrell
The precise role of vasopressin in the pathophysiology of cardiovascular disease is controversial, but this peptide hormone is important for several reasons. Firstly, circulating concentrations of vasopressin are elevated in heart failure and some forms of hypertension. Secondly, there is evidence that vasopressin is synthesized not only in the hypophysial-pituitary axis but also in peripheral tissues including the heart where it acts as a paracrine hormone. Thirdly, vasopressin has vasoconstrictor, mitogenic, hyperplastic and renal fluid retaining properties which, by analogy with angiotensin II, may have deleterious effects when present in chronic excess. Finally, the availability of orally active non-peptide vasopressin receptor antagonists allows vasopressin receptor antagonism to be considered as a therapeutic option in cardiovascular disease. [source]


Effects of prolactin on intracellular calcium concentration and cell proliferation in human glioma cells

GLIA, Issue 3 2002
Thomas Ducret
Abstract Prolactin (PRL) has several physiological effects on peripheral tissues and the brain. This hormone acts via its membrane receptor (PRL-R) to induce cell differentiation or proliferation. Using reverse transcription,polymerase chain reaction (RT-PCR) combined with Southern blot analysis, we detected PRL-R transcripts in a human glioma cell line (U87-MG) and in primary cultured human glioblastoma cells. These transcripts were deleted or not in their extracellular domains. We examined the effects of PRL on intracellular free Ca2+ concentration ([Ca2+]i) in these cells in order to improve our understanding of the PRL transduction mechanism, which is still poorly documented. [Ca2+]i was measured by microspectrofluorimetry using indo-1 as the Ca2+ fluorescent probe. Spatiotemporal aspects of PRL-induced Ca2+ signals were investigated using high-speed fluo-3 confocal imaging. We found that physiological concentrations (0.4,4 nM) of PRL-stimulated Ca2+ entry and intracellular Ca2+ mobilization via a tyrosine kinase,dependent mechanism. The two types of Ca2+ responses observed were distinguishable by their kinetics: one showing a slow (type I) and the other a fast (type II) increase in [Ca2+]i. The amplitude of PRL-induced Ca2+ increases may be sufficient to provoke several physiological responses, such as stimulating proliferation. Furthermore, PRL induced a dose-dependent increase in [3H]thymidine incorporation levels and in cellular growth and survival, detected by the MTT method. These data indicate that PRL induced mitogenesis of human glioma cells. GLIA 38:200,214, 2002. © 2002 Wiley-Liss, Inc. [source]


Clinical, cellular, and neuropathological consequences of AP1S2 mutations: further delineation of a recognizable X-linked mental retardation syndrome,

HUMAN MUTATION, Issue 7 2008
Guntram Borck
Abstract Mutations in the AP1S2 gene, encoding the ,1B subunit of the clathrin-associated adaptor protein complex (AP)-1, have been recently identified in five X-linked mental retardation (XLMR) families, including the original family with Fried syndrome. Studying four patients in two unrelated families in which AP1S2 nonsense and splice-site mutations segregated, we found that affected individuals presented, in addition to previously described features, with elevated protein levels in cerebrospinal fluid (CSF). Moreover, computed tomography scans demonstrated that the basal ganglia calcifications associated with AP1S2 mutations appeared during childhood and might be progressive. Based on these observations, we propose that AP1S2 mutations are responsible for a clinically recognizable XLMR and autism syndrome associating hypotonia, delayed walking, speech delay, aggressive behavior, brain calcifications, and elevated CSF protein levels. Using the AP-2 complex, in which the , subunit is encoded by one single gene, as a model system, we demonstrated that , subunits are essential for the stability of human AP complexes. By contrast, no major alteration of the stability, subcellular localization, and function of the AP-1 complex was observed in fibroblasts derived from a patient carrying an AP1S2 mutation. Similarly, neither macro- nor microscopic defects were observed in the brain of an affected fetus. Altogether, these data suggest that the absence of an AP-1 defect in peripheral tissues is due to functional redundancy among AP-1 , subunits (,1A, ,1B, and ,1C) and that the phenotype observed in our patients results from a subtle and brain-specific defect of the AP-1-dependent intracellular protein traffic. Hum Mutat 29(7), 966,974, 2008. © 2008 Wiley-Liss, Inc. [source]


Intestinal dendritic cells: Their role in bacterial recognition, lymphocyte homing, and intestinal inflammation

INFLAMMATORY BOWEL DISEASES, Issue 10 2010
S.C. Ng PhD
Abstract Dendritic cells (DCs) play a key role in discriminating between commensal microorganisms and potentially harmful pathogens and in maintaining the balance between tolerance and active immunity. The regulatory role of DC is of particular importance in the gut where the immune system lies in intimate contact with the highly antigenic external environment. Intestinal DC constantly survey the luminal microenvironment. They act as sentinels, acquiring antigens in peripheral tissues before migrating to secondary lymphoid organs to activate naive T cells. They are also sensors, responding to a spectrum of environmental cues by extensive differentiation or maturation. Recent studies have begun to elucidate mechanisms for functional specializations of DC in the intestine that may include the involvement of retinoic acid and transforming growth factor-,. Specialized CD103+ intestinal DC can promote the differentiation of Foxp3+ regulatory T cells via a retinoic acid-dependent process. Different DC outcomes are, in part, influenced by their exposure to microbial stimuli. Evidence is also emerging of the close interaction between bacteria, epithelial cells, and DC in the maintenance of intestinal immune homeostasis. Here we review recent advances of functionally specialized intestinal DC and their mechanisms of antigen uptake and recognition. We also discuss the interaction of DC with intestinal microbiota and their ability to orchestrate protective immunity and immune tolerance in the host. Lastly, we describe how DC functions are altered in intestinal inflammation and their emerging potential as a therapeutic target in inflammatory bowel disease. (Inflamm Bowel Dis 2010) [source]


Intervertebral disc, sensory nerves and neurotrophins: who is who in discogenic pain?

JOURNAL OF ANATOMY, Issue 1 2010
José García-Cosamalón
Abstract The normal intervertebral disc (IVD) is a poorly innervated organ supplied only by sensory (mainly nociceptive) and postganglionic sympathetic (vasomotor efferents) nerve fibers. Interestingly, upon degeneration, the IVD becomes densely innervated even in regions that in normal conditions lack innervation. This increased innervation has been associated with pain of IVD origin. The mechanisms responsible for nerve growth and hyperinnervation of pathological IVDs have not been fully elucidated. Among the molecules that are presumably involved in this process are some members of the family of neurotrophins (NTs), which are known to have both neurotrophic and neurotropic properties and regulate the density and distribution of nerve fibers in peripheral tissues. NTs and their receptors are expressed in healthy IVDs but much higher levels have been observed in pathological IVDs, thus suggesting a correlation between levels of expression of NTs and density of innervation in IVDs. In addition, NTs also play a role in inflammatory responses and pain transmission by increasing the expression of pain-related peptides and modulating synapses of nociceptive neurons at the spinal cord. This article reviews current knowledge about the innervation of IVDs, NTs and NT receptors, expression of NTs and their receptors in IVDs as well as in the sensory neurons innervating the IVDs, the proinflammatory role of NTs, NTs as nociception regulators, and the potential network of discogenic pain involving NTs. [source]


New molecular markers of early and progressive CJD brain infection

JOURNAL OF CELLULAR BIOCHEMISTRY, Issue 4 2004
Zhi Yun Lu
Abstract Transmissible spongiform encephalopathies (TSEs), including human Creutzfeldt,Jakob disease (CJD), are caused by a related group of infectious agents that can be transmitted to many mammalian species. Because the infectious component of TSE agents has not been identified, we examined myeloid cell linked inflammatory pathways to find if they were activated early in CJD infection. We here identify a specific set of transcripts in CJD infected mouse brains that define early and later stages of progressive disease. Serum amyloid A3 and L-selectin mRNAs were elevated as early as 20 days after intracerebral inoculation. Transcripts of myeloid cell recruitment factors such as MIP-1,, MIP-1,, and MCP1, as well as IL1, and TNF, were upregulated >10 fold between 30 and 40 days, well before prion protein (PrP) abnormalities that begin only after 80 days. At later stages of symptomatic neurodegenerative disease (100,110 days), a selected set of transcripts rose by as much as 100 fold. In contrast, normal brain inoculated controls showed no similar sequential changes. In sum, rapid and simple PCR tests defined progressive stages of CJD brain infection. These markers may also facilitate early diagnosis of CJD in accessible peripheral tissues such as spleen and blood. Because some TSE strains can differentially target particular cell types such as microglia, several of these molecular changes may also distinguish specific agent strains. The many host responses to the CJD agent challenge the assumption that the immune system does not recognize TSE infections because these agents are composed only of the host's own PrP. © 2004 Wiley-Liss, Inc. [source]


Morphine withdrawal produces circadian rhythm alterations of clock genes in mesolimbic brain areas and peripheral blood mononuclear cells in rats

JOURNAL OF NEUROCHEMISTRY, Issue 6 2009
Su-xia Li
Abstract Previous studies have shown that clock genes are expressed in the suprachiasmatic nucleus (SCN) of the hypothalamus, other brain regions, and peripheral tissues. Various peripheral oscillators can run independently of the SCN. However, no published studies have reported changes in the expression of clock genes in the rat central nervous system and peripheral blood mononuclear cells (PBMCs) after withdrawal from chronic morphine treatment. Rats were administered with morphine twice daily at progressively increasing doses for 7 days; spontaneous withdrawal signs were recorded 14 h after the last morphine administration. Then, brain and blood samples were collected at each of eight time points (every 3 h: ZT 9; ZT 12; ZT 15; ZT 18; ZT 21; ZT 0; ZT 3; ZT 6) to examine expression of rPER1 and rPER2 and rCLOCK. Rats presented obvious morphine withdrawal signs, such as teeth chattering, shaking, exploring, ptosis, and weight loss. In morphine-treated rats, rPER1 and rPER2 expression in the SCN, basolateral amygdala, and nucleus accumbens shell showed robust circadian rhythms that were essentially identical to those in control rats. However, robust circadian rhythm in rPER1 expression in the ventral tegmental area was completely phase-reversed in morphine-treated rats. A blunting of circadian oscillations of rPER1 expression occurred in the central amygdala, hippocampus, nucleus accumbens core, and PBMCs and rPER2 expression occurred in the central amygdala, prefrontal cortex, nucleus accumbens core, and PBMCs in morphine-treated rats compared with controls. rCLOCK expression in morphine-treated rats showed no rhythmic change, identical to control rats. These findings indicate that withdrawal from chronic morphine treatment resulted in desynchronization from the SCN rhythm, with blunting of rPER1 and rPER2 expression in reward-related neurocircuits and PBMCs. [source]


Localization of organic cation/carnitine transporter (OCTN2) in cells forming the blood,brain barrier

JOURNAL OF NEUROCHEMISTRY, Issue 1 2008
Dorota Miecz
Abstract Carnitine ,-hydroxy-,-(trimethylammonio)butyrate , a compound necessary in the peripheral tissues for a transfer of fatty acids for their oxidation within the cell, accumulates in the brain despite low ,-oxidation in this organ. In order to enter the brain, carnitine has to cross the blood,brain barrier formed by capillary endothelial cells which are in close interaction with astrocytes. Previous studies, demonstrating expression of mRNA coding two carnitine transporters , organic cation/carnitine transporter 2 (OCTN2) and B0,+ in endothelial cells, did not give any information on carnitine transporters polarity in endothelium. Therefore more detailed experiments were performed on expression and localization of a high affinity carnitine transporter OCTN2 in an in vitro model of the blood,brain barrier by real-time PCR, western blot analysis, and immunocytochemistry. The amount of mRNA was comparable in endothelial cells and kidney, when referred to house-keeping genes, it was, however, significantly lower in astrocytes. Polarity of OCTN2 localization was further studied in an in vitro model of the blood,brain barrier with use of anti-OCTN2 antibodies. Z -axis analysis of the confocal microscope pictures of endothelial cells, with anti-P-glycoprotein antibodies as the marker of apical membrane, showed OCTN2 localization at the basolateral membrane and in the cytoplasmic region in the vicinity of nuclei. Localization of OCTN2 suggest that carnitine can be also transported from the brain, playing an important role in removal of certain acyl esters. [source]


The Tissue-Specific Processing of Pro-Opiomelanocortin

JOURNAL OF NEUROENDOCRINOLOGY, Issue 6 2008
A. B. Bicknell
It is just over 30 years since the definitive identification of the adrenocorticotrophin (ACTH) precursor, pro-opiomelanocotin (POMC). Although first characterised in the anterior and intermediate lobes of the pituitary, POMC is also expressed in a number of both central and peripheral tissues including the skin, central nervous tissue and placenta. Following synthesis, POMC undergoes extensive post-translational processing producing not only ACTH, but also a number of other biologically active peptides. The extent and pattern of this processing is tissue-specific, the end result being the tissue dependent production of different combinations of peptides from the same precursor. These peptides have a diverse range of biological roles ranging from pigmentation to adrenal function to the regulation of feeding. This level of complexity has resulted in POMC becoming the archetypal model for prohormone processing, illustrating how a single protein combined with post-translational modification can have a diverse number of roles. [source]


The Endocannabinoid System and Energy Metabolism

JOURNAL OF NEUROENDOCRINOLOGY, Issue 6 2008
L. Bellocchio
Many different regulatory actions have been attributed to endocannabinoids, and their involvement in several pathophysiological conditions is under intense scrutiny. Cannabinoid receptors [cannabinoid receptor type 1 (CB1) and CB2] participate in the physiological modulation of many central and peripheral functions. The ability of the endocannabinoid system to control appetite, food intake and energy balance has recently received considerable attention, particularly in the light of the different modes of action underlying these functions. The endocannabinoid system modulates rewarding properties of food by acting at specific mesolimbic areas in the brain. In the hypothalamus, CB1 receptors and endocannabinoids are integrated components of the networks controlling appetite and food intake. Interestingly, the endocannabinoid system was recently shown to control several metabolic functions by acting on peripheral tissues such as adipocytes, hepatocytes, the gastrointestinal tract, the skeletal muscles and the endocrine pancreas. The relevance of the system is further strengthened by the notion that visceral obesity seems to be a condition in which an overactivation of the endocannabinoid system occurs, and therefore drugs interfering with this overactivation by blocking CB1 receptors are considered as potentially valuable candidates for the treatment of obesity and related cardiometabolic risk factors. [source]


Interplay Between Endocannabinoids, Steroids and Cytokines in the Control of Human Reproduction

JOURNAL OF NEUROENDOCRINOLOGY, Issue 2008
N. Battista
The use of marijuana, which today is the most used recreational drug, has been demonstrated to affect adversely reproduction. Marijuana smokers, both men and women, show impaired fertility, owing to defective signalling pathways, aberrant hormonal regulation, or wrong timing during embryo implantation. Anandamide (N -arachidonoylethanolamine, AEA) and 2-arachidonoylglycerol (2-AG) mimic ,9 -tetrahydrocannabinol (THC), the psychoactive principle of Cannabis sativa, by binding to both the brain-type (CB1) and the spleen-type (CB2) cannabinoid receptors. These ,endocannabinoids' exert several actions either in the central nervous system or in peripheral tissues, and are metabolised by specific enzymes that synthesise or hydrolyse them. In this review, we shall describe the elements that constitute the endocannabinod system (ECS), in order to put in a better perspective the role of this system in the control of human fertility, both in females and males. In addition, we shall discuss the interplay between ECS, sex hormones and cytokines, which generates an endocannabinoid,hormone,cytokine array critically involved in the control of human reproduction. [source]


Isolation and Characterisation of Four cDNAs Encoding Neuromedin U (NMU) From the Brain and Gut of Goldfish, and the Inhibitory Effect of a Deduced NMU on Food Intake and Locomotor Activity

JOURNAL OF NEUROENDOCRINOLOGY, Issue 1 2008
K. Maruyama
In rodents, neuromedin U (NMU; U for its original effects examined in the uterus) is a multifunctional neuropeptide implicated in the regulation of the circulatory and digestive systems and energy homeostasis, especially appetite. However, there is no available information on the nature and physiological roles of NMU in fish. Therefore, we attempted to isolate and characterise transcripts encoding NMU from the brain and gut of the goldfish, and to examine the involvement of NMU in the regulation of feeding behaviour in this species. We identified four cDNAs encoding three NMU orthologs from the brain and gut. Putative peptides consisting of 21, 25 and 38 amino acid residues (NMU-21, NMU-25 and NMU-38) were deduced from their nucleotide sequences. Two mRNAs for NMU-25 were strongly expressed in the gut and weakly expressed in the brain and testis. By contrast, mRNA for NMU-21 was strongly expressed in the brain and weakly expressed in the peripheral tissues. Expression of mRNA for NMU-38 was weakly expressed only in the brain. Therefore, we examined the effect of feeding status on the expression of NMU-21 mRNA in the brain. Fasting for 7 days induced a significant decrease in the expression levels of NMU-21 mRNA in the brain. We also synthesised NMU-21 after deducing its C-terminal amide from the NMU-21 mRNA, and then investigated the effect of intracerebroventricular (i.c.v.) administration of NMU-21 on food intake and locomotor activity in the goldfish. NMU-21, injected i.c.v., suppressed food intake and locomotor activity in a dose-dependent manner. These results suggest that NMU orthologs exist in fish, and that the NMU-21 deduced from them can potently inhibit food intake and locomotor activity in goldfish. [source]